Skip to content. | Skip to navigation

Sections
Personal tools
You are here: Home

Search results

42 items matching your search terms.
Filter the results.
Item type


















New items since



Sort by relevance · date (newest first) · alphabetically
Dam Removals to Reconnect Brook Trout Habitat on an Unnamed Tributary to Frankstown Branch, PA
This project will remove two fish passage barriers to provide 1.33 miles of unrestricted fish passage to high-quality coldwater spawning and rearing habitat.
Located in Projects / 2006 - 2018 Projects / 2013 Projects
St. Mary's Liming, St. Mary's River, Virginia
The streams of the Saint Mary's Wilderness, located on the slopes of Virginia's Blue Ridge Mountains, have been severely compromised by anthropogenic atmospheric acid deposition. This project will add limestone sand using to the headwater streams of St. Mary's River to enhance over 12 miles of stream for brook trout.
Located in Projects / 2006 - 2018 Projects / 2013 Projects
In-Stream Habitat Restoration in the Meduxnekeag Watershed, Maine
This project will restore 1.9 miles of habitat on the Meduxnekeag River mainstem and 0.25 miles of habitat on its north branch for brook trout within trust land for the Houlton Band of Maliseet Indians. The project will return the river to a more natural, sustainable state of in-stream habitat complexity, increase brook trout habitat quality, and promote interest in future restoration activities.
Located in Projects / 2006 - 2018 Projects / 2013 Projects
File Assessing the Efficacy of Remediating Episodic Low pH (and High Aluminum) Concentrations in Headwater Brook Trout Streams with Clam Shell Additions_FY09 Project
This project demonstrated that clam shells could be utilized to increase pH and decrease detrimental inorganic aluminum concentrations. In Dead Stream, water chemistry has improved by approximately 1.0 pH unit, and total fish densities increased two-fold. In Canaan Brook water chemistry has improved by 1.0 pH unit and First Lake Stream improved by 0.7 pH unit, while fish densities have increased 2- and 6- times, respectively. Macroinvertebrate communities have improved somewhat, especially among mayflies and stoneflies, while amphipods and snails have appeared for the first time. However, even at treated sites, macroinvertebrate communities continue to have low diversity and may not achieve Class A water quality. Overall, by adding buffering capacity, there has been a boost to the bottom of the food chain which has contributed to improved fish abundance and diversity. In the fourth year, biological communities are still adapting to the new conditions.
Located in Projects / Project Completion Reports
File Troff document Willow Creek Restoration, PA_FY10 Project
This reports provides a summary of the work completed on this project from October, 2012 to September, 2013.
Located in Projects / Project Completion Reports
File Troff document Lynn Camp Prong Brook Trout Restoration, TN_FY11 Project
This project was focused on removing rainbow trout from Lynn Camp Prong and re-stocking this stream with wild southern Appalachian strain Brook Trout,
Located in Projects / Project Completion Reports
File EBTJV Organizational and Communications Assessment_2013
The EBTJV worked with River Network and Water Words That Work who were contracted to complete an organizational and communications assessment of our partnership; the final report summarizes the outcomes from these assessments.
Located in Projects / EBTJV Operational Evaluation Reports
File The Importance of Scale: Assessing and Predicting Brook Trout Status in its Southern Native Range
Occupancy models are of increasing interest to managers and natural resource decision makers. Assessment of status and trends, as well as the specific drivers influencing occupancy, both may change as a function of scale, and analyses conducted at multiple scales can help identify important mechanisms leading to changes in distributions. We analyzed extensive fine-scale occupancy data across the southern historic range of the brook trout, Salvelinus fontinalis to determine which landscape metrics and thresholds were useful in predicting brook trout presence across three relevant spatial scales and how brook trout occupancy varied by scale. Percentage occupancy declined markedly with increased spatial resolution, as 52% of watersheds (HUC10) but only 32% of subwatersheds (HUC12) and 14% of catchments (HUC14) were occupied. Across all three scales, habitats which were exclusively occupied by native brook trout (without non-native trout) were rare (<10%). CART models using GIS-derived landscape predictor variables were developed for three classification cases: Case 1:(brook trout; no brook trout), Case 2 (brook trout; non-native trout only; no trout), and Case 3 (brook trout only; brook and non-native trout; non-native trout only and no trout). Model results were sensitive to both scale and the number of classification categories with respect to classification accuracy, variable selection and variable threshold values. Classification accuracy tended to be lowest at the finest (catchment) scale potentially reflecting stochastic population processes and barriers to movement. Classification rates for the overall models were: Case 1: Watershed (80.19%); Subwatershed (85.06%); Catchment (71.13%); Case 2: Watershed (69.31%); Subwatershed (68.72%); Catchment (57.38%); Case 3: Watershed (58.91%); Subwatershed (59.83%); Catchment (47.59%). Our multiscale approach revealed soil permeability (positive) and atmospheric pollution (negative) to be important predictors. The predicted occupancy and observed status of brook trout appear to be influenced by the scale the data are collected and reported.
Located in Science and Data / Brook Trout Related Publications
File application/x-troff-ms What predicts the use by brook trout (Salvelinus fontinalis) of terrestrial invertebrate subsidies in headwater streams?
1. Spatial subsidies are important resources for organisms in receiving habitats, particularly when production in those habitats is low. Terrestrial invertebrates provide a critical subsidy for trout, including eastern brook trout (Salvelinus fontinalis), but we have limited understanding of what causes input and use of these subsidies to vary among streams. 2. We predicted that forest successional stage would be an especially important driver of variation in terrestrial invertebrate subsidies to brook trout in headwater streams due to differences in terrestrial invertebrate biomass in early and late successional habitats. Specifically, we expected biomass of aerial invertebrates, those capable of dispersal to the stream, to be greater in early successional habitat than late successional habitat due to the nutrient-rich, herbaceous vegetation typical of early successional habitat. 3. We measured aerial terrestrial invertebrate biomass in early and late successional habitats, input to streams and use by resident brook trout in 12 first- and second-order catchments in northern New Hampshire, U.S.A. The study catchments represented a range of early successional habitat coverage (0–51.5%). We also measured a suite of reach-scale variables that might influence terrestrial invertebrate input and use by brook trout, including riparian forest conditions and benthic invertebrate biomass. 4. Within study catchments, aerial terrestrial invertebrate biomass and abundance were significantly higher in early successional habitats than late successional habitats. However, terrestrial invertebrate input to streams and use by brook trout were unrelated to per cent early successional habitat in the catchment, and to other catchment and riparian forest characteristics. These results indicate that the management for upland early successional habitat has little effect on terrestrial invertebrate subsidies to headwater streams and fish. 5. Surprisingly, benthic invertebrate biomass was the one significant predictor of per cent terrestrial invertebrates in brook trout diets. Use of terrestrial invertebrate subsidies declined with increasing benthic invertebrate biomass, suggesting that productivity in the aquatic environment influences the degree to which brook trout use terrestrial subsidies. Although subsidy inputs are controlled by the donor system, this study shows that use of these subsidies by consumers can be determined by conditions in the recipient habitat.
Located in Science and Data / Brook Trout Related Publications
File Broad-Scale Patterns of Brook Trout Responses to Introduced Brown Trout in New York
Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta are valuable sport fish that coexist in many parts of the world due to stocking introductions. Causes for the decline of Brook Trout within their native range are not clear but include competition with Brown Trout, habitat alteration, and repetitive stocking practices. New York State contains a large portion of the Brook Trout’s native range, where both species are maintained by stocking and other management actions.We used artificial neural network models, regression, principal components analysis, and simulation to evaluate the effects of Brown Trout, environmental conditions, and stocking on the distribution of Brook Trout in the center of their native range. We found evidence for the decline of Brook Trout in the presence of Brown Trout across many watersheds; 22% of sampled reaches where both species were expected to occur contained only Brown Trout. However, a model of the direct relationship between Brook Trout and Brown Trout abundance explained less than 1% of data variation. Ordination showed extensive overlap of Brook Trout and Brown Trout habitat conditions, with only small components of the hypervolume (multidimensional space) being distinctive. Subsequent analysis indicated higher abundances of Brook Trout in highly forested areas, while Brown Trout were more abundant in areas with relatively high proportions of agriculture. Simulation results indicated that direct interactions and habitat conditions were relatively minor factors compared with the effects of repeated stocking of Brown Trout into Brook Trout habitat. Intensive annual stocking of Brown Trout could eliminate resident Brook Trout in less than a decade. Ecological differences, harvest behavior, and other habitat changes can exacerbate Brook Trout losses. Custom stocking scenarios with Brown Trout introductions at relatively low proportions of resident Brook Trout populations may be able to sustain healthy populations of both species within their present range.
Located in Science and Data / Brook Trout Related Publications