Summary: Extending, standardizing, and automating the salmonid status assessment is a fundamental goal of the Eastern Brook Trout Joint Venture. This document provides a step-by-step description of these procedures, as well as providing examples for their application.
Contents

Algorithms ... 3
Results ... 10
Validation Process .. 11
Visualization

Add to ArcMap .. 13
Add to Quantum GIS ... 17
Algorithms

Both the salmonid catchment assessment and habitat patch layers are created using algorithms (Figures 1 & 2) written in Python and implemented through ArcGIS toolboxes (Figure 3).

Figure 1: Simplified flowchart of the salmonid catchment assessment algorithm.
Figure 2: Simplified flowchart of the salmonid habitat patch algorithm.

- **Catchment**: Ordered by descending stream order
 - Check if already used
- **Already used**
- **Do nothing**
- **Not used**
 - **Move downstream**
 - Stop if barrier present, catchment unsampled, or restrictions exceeded
 - **Move upstream**
 - Repeat until barrier present, stream end reached, or restriction exceeded
- **Select catchments**
 - Classify patch based on species in catchments, calculate patch statistics
- **Add new polygon to patch layer**
Figure 3: Screen shots of salmonid catchment assessment and habitat patch toolboxes in ArcGIS used to parameterize and run their associated algorithms.
Each toolbox has a simple and intuitive visual interface that enables the user to supply layer and table names, and to specify the use of conditions to restrict the algorithm. The algorithms operate using several spatial layers. The first is a point layer of sample locations containing sample date, salmonid species captured (count or presence), and location coordinates. Additional layers and tables from the NHD+ version 2 dataset are also required. These include the catchment polygon layer, flowline vector layer, catchment raster layer, flow direction raster layer, flow direction null raster layer, plus flowline VAA table, and plus flow table. Finally, a barrier layer is required. The baseline barrier dataset is derived from the National Anthropogenic Barrier Dataset (NABD) 2012. This dataset was further supplemented with the Nature Conservancy's dam layer, and state dam and impassable waterfall locations if provided. All layers were assembled for the entire EBTJV range before being clipped by the outline of HUC 10 drainages spatially joined to a state and dissolved into a single feature in order to alleviate edge effects.
Catchment classification consisted of determining which species were present, and how long ago the sample was conducted. All samples occurring greater than 10 years from the analysis year were given a 'P' after the code representing 'predicted'. Catchments upstream of a sample point were inferred from the downstream catchment, and given the classification code of that catchment. Table 1 details the different classification codes.

Table 1: Catchment classification code definitions (BKT = brook trout, BNT = brown trout, RBT = rainbow trout).

<table>
<thead>
<tr>
<th>Species Present</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Classified</td>
<td>-1</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>None</td>
<td>0P</td>
</tr>
<tr>
<td>BNT</td>
<td>0.2</td>
</tr>
<tr>
<td>RBT</td>
<td>0.3</td>
</tr>
<tr>
<td>BNT & RBT</td>
<td>0.4</td>
</tr>
<tr>
<td>Stocked BKT</td>
<td>0.5</td>
</tr>
<tr>
<td>BKT</td>
<td>1.1</td>
</tr>
<tr>
<td>BKT & BNT</td>
<td>1.2</td>
</tr>
<tr>
<td>BKT & RBT</td>
<td>1.3</td>
</tr>
<tr>
<td>BKT & BNT & RBT</td>
<td>1.4</td>
</tr>
<tr>
<td>BKT & Stocked BKT</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Certain restrictions ended up being necessary due to the sometimes absence of smaller streams in the flowline layer (Figure 4), the occurrence of multiple stream reaches in a single catchment (Figure 5), and unrealistic biological outcomes. There are four available restriction conditions:

1) Maximum sample point distance
2) Maximum dam point distance
3) Maximum stream order to infer upstream catchment classification
4) Maximum upstream distance to infer catchment classification from the sample point

Restrictions 1 and 2 rectify sample and barrier locations occurring on streams not present in the flowline layer (Figure 4). Restriction 3 deals with sample locations occurring on streams not present in the flowline layer that flow into a large river, or catchments containing multiple flowlines where the sample location occurs in a smaller stream while the catchment is associated with the larger stream or river (Figure 5). Restriction 4 enables the user to limit upstream catchment classification inferred from a downstream sample location based on total stream distance.

Additional options incorporated into the algorithm to enhance flexibility include:

1. The ability to trump a "0" classification (no salmonids) with an older sample positive for salmonid occurrence present in the same catchment as long as the older sample was conducted on or after a user-specified cutoff year.
2. The ability to classify a catchment based on the combination of species present in different samples within the same catchment within the same year instead of restricting it to only the most recent sample.
Figure 4: Image depicting a single catchment containing multiple sample (purple diamond) and barrier (yellow diamond) locations, with several of them occurring well away from the flowline (blue line).
Analyses for all Northern states (except Maine) were run using the following default conditions:

- Max sample point distance = 250 meters
- Max dam distance = 250 meters
- Max stream order BKT = 4th order
- Max stream order Invasives = 5th order
- Max upstream distance = 50 kilometers

Note: Settings for Maine were No max sample point distance (because catchment centroids were used instead of sample points), max stream order for brook trout was 5, max upstream distance for brook trout was 80 km, and max upstream distance for invasives was 10 km.

The sample point condition was not used for patch reconstruction because the stream order condition appeared to take care of small tributaries flowing into larger rivers and multi-flowline catchments, and I wanted to allow connectivity for other instances.
For patch reconstruction, two different algorithms are used. The first algorithm (brook trout) delineates patches for catchments containing brook trout in either allopatry or sympatry, but ignores catchments containing only brown and/or rainbow trout. The second algorithm (wild trout) delineates patches for catchments containing any combination of salmonids.

Results

Both algorithms output results to ESRI shapefiles. The catchment assessment algorithm adds several fields directly to the NHD+ catchment polygon attribute table (Table 2, Figure 6).

Table 2: Descriptions of fields added to the NHD+ catchment layer by the catchment assessment analysis.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBTJV_Code</td>
<td>The classification code of the catchment based on salmonid species present</td>
</tr>
<tr>
<td>Catch_Cnt</td>
<td>Sequential upstream catchment count from the catchment containing the sample point used for classification</td>
</tr>
<tr>
<td>Cum_Length</td>
<td>Cumulative stream length from the catchment containing the sample point used for classification</td>
</tr>
<tr>
<td>Samp_Year</td>
<td>The year in which the sample point used for classification was conducted</td>
</tr>
<tr>
<td>Samp_Dist</td>
<td>The Euclidian distance of the sample point location from the flowline (only calculated for catchments containing the sample point used for classification)</td>
</tr>
<tr>
<td>Samp_OID</td>
<td>The object identifier (fid) of the sample point used for classification</td>
</tr>
<tr>
<td>Dam</td>
<td>Whether or not the catchment contains a barrier</td>
</tr>
<tr>
<td>Samp_Loc</td>
<td>Whether the sample point is above or below the barrier (only determined for catchments containing the sample point used for classification and a barrier)</td>
</tr>
<tr>
<td>Str_Order</td>
<td>The stream order of the flowline associated with the catchment</td>
</tr>
<tr>
<td>Comment</td>
<td>Adds the classification code and sample year for additional sample points located in the catchment</td>
</tr>
</tbody>
</table>

Figure 6: A portion of the catchment assessment layer attribute table after analysis containing newly added fields.

The habitat patch algorithms save all patches to a shapefile named by the user. Each algorithm (brook trout, wild trout) creates its own shapefile. Table 3 and Figure 7 detail the information contained in the attribute table of each habitat patch shapefile.

Table 3: Descriptions of fields output to the habitat patch layer attribute table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feat_ID</td>
<td>The FEATUREID of the most-downstream catchment contained in the patch</td>
</tr>
<tr>
<td>EBTJV_Code</td>
<td>The classification of the patch based on the classification of the catchments within it</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num_Catch</td>
<td>The number of catchments contained within the patch</td>
</tr>
<tr>
<td>Area_HA</td>
<td>The total area of the patch in hectares</td>
</tr>
<tr>
<td>Patch_Comp</td>
<td>The classification composition of the catchments within the habitat patch</td>
</tr>
<tr>
<td>Prop_BKT</td>
<td>The proportion of catchments within the patch classified as containing brook trout</td>
</tr>
</tbody>
</table>

Figure 7: A portion of the brook trout habitat patch layer attribute table.

Validation Process

The validation process involved each state looking at the catchment layer classifications (EBTJV_Code) and determining if they should differ from what the algorithm produced. For example, a catchment classified as containing only rainbow trout (0.3) should also contain brook trout and so should be changed to 1.3. Or, an unclassified catchment (-1) should be classified as having brook trout and so should be changed to 1.1.

To accomplish this, each state received the following spatial layers (file name where XX is state abbreviation):

- Catchments ('XX_Catchments')
- Habitat patches (1 combined and 1 for each species) ('XX_Patches', 'XX_Patches_BKT', 'XX_Patches_BNT', 'XX_Patches_RBT')
- Sample locations ('XX_BKT_GIS_Format_Plus')
- Barrier locations ('XX_Barriers_Plus')
- Streams ('XX_NHDFlowline')
- Waterbodies ('XX_NHDWaterbody')
- State outline (State name)
- HUC_10 outline ('XX_HUC10_Outline')
- Roads ('XX_Roads')
- Style files ('Catchment_Style_10.0.lyr' or 'Catchment_Style_10.1.lyr' for ArcMap, 'Catchment_Style.sld' for Quantum GIS)

Catchments were visualized and examined using either ArcGIS or Quantum GIS (QGIS) software (NOTE: See below for steps on how to add and style the data). Catchments requiring
changes to the classification code had the following information written to a file (see example in Table 4):

- FEATUREID of the catchment
- Current EBTJV_Code
- Replacement EBTJV_Code
- Reason

Table 4: Format for returning edits to the catchment assessment layer.

<table>
<thead>
<tr>
<th>FEATUREID</th>
<th>EBTJV_Code CURRENT</th>
<th>EBTJV_Code CHANGE</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>22152571</td>
<td>1.2</td>
<td>1.1</td>
<td>Brown trout were stocked</td>
</tr>
<tr>
<td>22152673</td>
<td>-1</td>
<td>1.1</td>
<td>Knowledge of trout presence</td>
</tr>
</tbody>
</table>

Received edits were applied to the associated catchment layer through an automated process that performed the following steps:

- The fields val_change and val_reason were added to the catchment layer

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>val_change</td>
<td>The original classification code of the catchment</td>
</tr>
<tr>
<td>val_reason</td>
<td>The justification for the classification code change</td>
</tr>
</tbody>
</table>

- The classification code for the catchment was changed to the edited value
- Any catchments upstream of the edited catchment deriving their classification code from the same source as the edited catchment were changed to the edited value
- The val_change and val_reason fields are populated with the original catchment classification and the reason for the edit.
Visualization

The final catchment and patch layers can be viewed and downloaded at the following websites:

http://www.conservationdesign.org/

A geodatabase containing the catchment and patch layers is also available for download here:

Steps for adding the catchment layer to ArcMap 10.1

1) Add the 'xx_catchment.shp' file to your map where 'xx' represents your state abbreviation.

2) Open the catchment layer's properties (either double-click on layer name in table of contents or right-click on layer name and select properties), and select the 'Symbology' tab.
3) Click the 'Import...' button in the upper right corner and select the 'Catchment_Style_10.1.lyr' file.
NOTE: For ArcMap 10.0 use the 'Catchment_Style_10.0.lyr' file.
NOTE: Layer will say 'RI_Catchments', but this is alright.
4) Click 'OK'.

5) Leave the value field as 'EBTJV_Code', and Click 'OK'.

6) Click OK again to close properties.
Steps for adding the catchment layer to Quantum GIS (QGIS) 2.6

1) Add the 'xx_catchment.shp' file to your map where 'xx' represents your state abbreviation.

2) Open the catchment layer's properties (either double-click on layer name in table of contents or right-click on layer name and select properties), and select the 'Style' tab.
3) Click the 'Load Style...' button in the lower left corner and select the 'Catchment_Style.sld' file. NOTE: Change file extension to 'SLD File (*.sld)'.

4) Click 'Open'.

![Image of the Load layer properties from style file dialog box]

![Image of the Layer Properties - NL_Catchments | Style window]
5) Click 'OK' to close properties.