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1. INTRODUCTION

1.1 Project background

Fishery and aquatic scientists often assess habitats to understand the distribution, status, stressors, and
relative abundance of aquatic resources. Due to the spatial nature of aquatic habitats and the increasing
scope of management concerns, using traditional analytical methods for assessment is often difficult.
However, advancements in the geographic information systems (GIS) field and related technologies have
enabled scientists and managers to more effectively collate, archive, display, analyze, and model spatial and
temporal data. For example, spatially explicit habitat assessment models allow for a more robust
interpretation of many terrestrial and aquatic datasets, including physical and biological monitoring data,
habitat diversity, watershed characteristics, and socioeconomic parameters.

For this project, Downstream Strategies (DS) was contracted by the United States Fish and Wildlife Service
(USFWS) to create a spatially explicit data analysis and modeling system for assessing fish habitat condition
across the Midwest based on a range of metrics. The data and tools developed as part of the project will be
applicable to watersheds, streams, rivers, and lakes within the boundaries of the USFWS’s Midwest Fish
Habitat Partnership (FHP) and scalable to the national level.

Generally, the models, analyses, and data produced as a result of this project are intended to enable a
unique, broad, and spatially explicit understanding of the links between natural habitat conditions, human
influences on aquatic habitats, and aquatic health. Specifically, the outcomes will be utilized to conduct fish
habitat condition assessments based on a range of stakeholder-specified metrics and modeling endpoints
that will help determine the natural drivers of aquatic conditions as well as the major stressors at various
spatial scales in specific FHP regions. Additionally, a geospatial decision support tool will be developed to give
users the ability to understand habitat conditions and stressors based on the status and severity of threats at
specified locations. The ultimate goal is to improve understanding of how local and regional processes
influence stream conditions in the region and to provide FHPs with additional knowledge, data, and tools to
help prioritize and drive conservation action in the Midwest.

1.2 Overview of the assessment process

A diagram of the general assessment process is outlined in Figure 1. DS received landscape and aquatic data
specified and provided by the individual FHPs to develop models and tools for use in visualizing expected
current and potential future conditions and prioritizing management actions.

Figure 1: Diagram of the habitat assessment process
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The data provided by FHPs for use in the modeling process can be broken down into two categories:
response variables and predictor variables. The response variables are typically instream measures of
condition, including biological measures such as species abundance, presence, or richness; or instream
physicochemical measures, such as pH, conductivity, or physical habitat scores. Each FHP provided five to
seven individual response variables for use in the assessment. Each response variable represents a separate
model and assessment and each of those models has a summary report. The predictor variables are typically
measures of land use or land cover derived from GIS, such as percent impervious surface area or road
crossing density. Although the response variable is always measured at the same local scale (i.e., individual
sample site on a stream), the predictor variables are compiled at multiple scales (Figure 2), including the local
scale (i.e., single 1:100k National Hydrography Dataset (NHD) stream catchment), the network scale (i.e., all
upstream catchments and the local catchment), or the regional scale (e.g., ecoregion).

Figure 2: Diagram and examples of different scales of data used for predictor variables

downstream of

The process then employs a statistical modeling approach, called boosted regression trees (BRTs), to relate
the instream response variable to the landscape-based predictor variables. This process results in a series of
quantitative outcomes, including predictions of expected current conditions to all catchments in the FHP (on
the scale of the response), measures of the accuracy of those predictions, a quantification of each predictor
variable’s relative influence on the predictions (i.e., variable importance), and a series of plots illustrating the
modeled functional relationship between each predictor and the response (e.g., plot of impervious area vs.
presence-absence).

Predictive accuracy is quantified using an internal cross-validation (CV) method (Elith et al., 2008). The
method consists of randomly splitting the input dataset into ten equally-sized subsets, developing a BRT
model on a single subset and testing its performance on the remaining nine, and then repeating that process
for the remaining nine subsets. Thus, the accuracy measures, such as the CV receiver operating characteristic
(ROC) score (for presence-absence responses) or the CV correlation coefficient, are actually averages of ten
separate ROC or correlation measurements. A standard error for the ten estimates is also given. CV measures
are designed to estimate how well the model will perform using independent data.
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The outcomes of the statistical modeling component are then used to generate the application portion of the
assessment. In this portion, predictions of current conditions and model accuracy can be visualized in a
spatially explicit manner using GIS. Likewise, the statistical outcomes are used to generate the post-modeling
indices of anthropogenic stress and natural habitat quality. These indices are derived directly from the
measures of variable influence and their functional relationships with the response. Specifically, each
predictor variable in the statistical model is extracted, along with its importance value and functional plot, to
generate an individual metric for use in calculating a cumulative index of stress or natural quality. The
individual predictors that are anthropogenic in nature (e.g., impervious surface cover) are used to generate
anthropogenic stress metrics and the cumulative anthropogenic stress index (CASI), whereas predictors that
are of natural origin (e.g., bedrock geology) are used to generate natural quality metrics and the cumulative
natural quality index (CNQI). These metrics and indices are generated at the 1:100k NHD catchment scale and
can be mapped in GIS. Once developed, CNQI and CASI are used to generate and visualize restoration and
protection priorities. For example, areas of high natural quality (i.e., high CNQI score) and low stress (i.e., low
CASI score) could represent protection priorities, whereas areas of high natural quality and high stress may
represent restoration priorities.

All of the aforementioned outputs will be integrated into a GIS-based decision support system for use in
visualizing current conditions and for use in forecasting and visualizing scenarios based on expected changes
in anthropogenic stressors or socioeconomic factors.

1.3 Document outline

This report provides a summary of the key outcomes resulting from models developed by DS for use in
assessing aquatic habitats in the Ohio River Basin FHP (ORB) and Southeast Aquatic Resources Partnership
Restoration Effort (SARP). The appendices provide additional maps, charts, and metadata useful for
evaluating the results of the models.

This document is divided into nine major sections. This section, Section 1, summarizes the project goals,
structure, and methodology. Section 2-Section 8 summarize the model input and results for each response
variable. Section 9 summarizes some of the limitations to this modeling effort, and outlines suggestions for
future similar works.

The following are included for each model’s results summary. Subsection one, Modeling inputs, discusses
details of the predictor and response variables used in the analyses. Subsection two, Modeling process,
covers the basic details and outcomes of the statistical modeling process using boosted regression trees,
including information on model certainty. Variable influence and functional relationships between predictor
and response variables are included under corresponding headings as well. Subsection three, Post-modeling,
contains information resulting from the post-modeling process, including information on the top stressors
and natural habitat variables and their relative weights in the calculation of the final indices. Section four,
Mapped Results, contains maps for visualizing conditions at the 1:100k catchment scale and includes maps of
expected current diversity index condition, stress, and natural quality; it also provides an example of how the
two post-modeling indices (i.e., CNQI and CASI) can be combined to arrive at restoration priorities and how
those priorities can be visualized in a spatially explicit manner.
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2. SMALL STREAMS SIGNATURE FISH INDEX

2.1 Modeling inputs

DS used a list of predictor variables selected by ORB and SARP to develop a ten-fold CV BRT model for the
small streams signature fish index (“stream index”) at the 1:100k catchment scale. The model was used to
produce maps of expected current stream index scores and of expected current natural habitat quality and
anthropogenic stress at the 1:100k scale throughout the extents of both FHPs.

DS cooperated with ORB and SARP to arrive at a list of landscape-based habitat variables used to predict
stream index throughout the region; ultimately, those variables were also used for characterizing habitat
quality and anthropogenic stress. From an initial suite of 372 catchment attributes, DS and the FHPs compiled
a list of 92 predictors for evaluation. From that list, 48 variables were removed due to statistical redundancy
(r>0.6) or logical redundancy, resulting in a final list of 44 predictor variables for the BRT model and
assessment. See Appendix A for a full data dictionary and the metadata document for variable processing
notes.

ORB and SARP provided DS with a fish collection dataset comprised of 5,346 observations from 1996 to 2010
from catchments with a stream order of less than six. These 5,346 observations were used to construct the
stream index BRT model. Figure 3 maps all of the sampling sites that were used to construct the model and
outlines all of the 1:100k catchments to which the modeling outputs were applied.

The stream index variable was fully processed by ORB and SARP prior to being transferred to DS. Stream
index values were calculated for each sample site in the dataset using abundance data for 12 selected small
stream species and three selected small stream genera (Table 1). Each species or taxa scored 0-5 for each site
based on 5th, 25th, 50th, and 75th percentile values of the species’ abundance from all events (based on box
plots). Then, species scores were added to produce a final stream index score for each site. Scores were
stratified by stream size and Omernik’s Level Il Ecoregions. Sites were divided into small rivers (fourth and
fifth order) and headwaters (first through third order). Scores were standardized from each stream size and
ecoregion by dividing individual scores by the maximum observed for each stratum.

Table 1: Small streams signature fish index taxa list with scoring thresholds based on abundance

Stream order

Scientific name Common name 1 2 3 4 5
Ammocrypta spp Sand darters 1 1 2 5 11
Aphredoderus sayanus Pirate perch 1 1 3 8 18
Clinostomus spp Dace 1 2 6 27 63
Cottus spp Sculpins 1 4 17 61 146
Elassoma zonatum Banded pygmy sunfish 1 1 1 1 1
Esox niger Chain pickerel 1 1 1 2 2
Etheostoma spp Darters 1 3 8 24 55
Forbesichtys agassizii Spring cavefish 1 1 1

Lepomis punctatus Spotted sunfish 1 1 1

Lota lota Burbot 1 1 1

Micropterus dolomieu Smallmouth bass 1 2 5 13 29
Noturus phaeus Brown madtom 1 1 5 11 22
Percina spp Darters 1 3 6 13 21
Phoxinus spp Dace 1 2 9 35 83
Salvenius fontinalis Brook trout 1 3 9 21 48
Umbra limi Central mudminnow 1 1 2 7 16
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Figure 3: Small streams signature fish index modeling area and sampling sites
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2.2 Modeling process

2.2.1 Predictive performance

The final selected model was comprised of 5,700 trees. The model had a CV deviance statistic of
240.138+4.583 and a CV correlation statistic of 0.619+0.007.

2.2.2 Variable influence

The BRT output includes a list of the predictor variables used in the model, ordered and scored by
their relative importance. The relative importance values are based on the number of times a variable
is selected for splitting, weighted by the squared improvement to the model as a result of each split,
and averaged over all trees (Friedman and Meulman, 2003). The relative influence score is scaled so
that the sum of the scores for all variables is 100, where higher numbers indicate greater influence. Of
the 44 predictor variables used to develop the stream index model, 43 had a relative influence value
greater than zero (
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Table 2). The five most influential predictors, which accounted for over 47% of the total influence in the
model, were:

e network drainage area,

e Level lll Ecoregion,

network wetland land cover,
mean annual air temperature, and
network mean baseflow index.

The five most influential anthropogenic stressors, which accounted for almost 23% of the total influence,
were:

e network wetland land cover,

network density of cattle,

network riparian disturbance,

network impervious surface cover, and
network pasture land cover.

The five most influential natural habitat variables, which contributed almost 43% of the total influence, were:

network drainage area,

Level Ill Ecoregion,

mean annual air temperature,
network mean baseflow index, and
network C, C/D soil cover.

Network drainage area, the single most important variable in terms of relative influence, contributed nearly
16% of the total influence.
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Table 2: Relative influence of all variables in the final stream index model

Variable code Variable description Relative influence

cumdrainag Network drainage area 15.94
eco_code3 Level Ill Ecoregion 12.94
wetlandpc Network wetland land cover 6.64
temp Mean annual air temperature 6.18
bfi_meanc Network mean baseflow index 5.85
cattlec Network density of cattle 4.36
ripdispc Network riparian disturbance index 431
imp06¢c Network impervious surface cover 3.87
pastpc Network pasture land cover 3.80
roadcrc_den Network density of road crossings 3.10
cropspc Network rowcrop land cover 2.92
water_swc Network surface water consumption 2.70
water_gwc Network groundwater consumption 2.22
grasspc Network grassland land cover 2.19
devp Local developed land cover 2.10
popdens Local population density 2.09
soil3pc Network soil group C,C/D cover 2.06
roadcr_den Local density of road crossings 1.78
tric_den Network density of Toxic Release Inventory sites 1.69
damsc_den Local wetland land cover 1.67
ripdisp Local riparian disturbance 1.45
brock7pc Network shale bedrock geology cover 1.45
brocklpc Network carbonate bedrock geology cover 1.03
minesc_den Network density of mines 0.94
brocképc Network sandstone bedrock geology land cover 0.80
soil4pc Network soil group D cover 0.78
brock4pc Network metamorphic bedrock geology cover 0.75
npdesc_den Network density of National Pollutant Discharge Elimination System permits 0.55
surfdpc Network lacustrine surficial geology cover 0.51
soillpc Network soil group A, A/D cover 0.35
surf2pc Network outwash surficial geology cover 0.35
brock3pc Network mafic/igneous bedrock geology cover 0.33
surf7pc Network clay surficial geology cover 0.32
tri_den Local density of Toxic Release Inventory sites 0.32
surfépc Network residuum surficial geology cover 0.25
surf3pc Network alluvium surficial geology cover 0.23
brock5pc Network sand/gravel bedrock geology cover 0.22
brock2pc Network felsic/igneous bedrock geology cover 0.21
mines_den Local density of mines 0.21
npdes_den Local density of National Pollutant Discharge Elimination System permits 0.20
cercc_den Network density of Superfund sites 0.14
dams_den Local density of dams 0.13
surfSpc Network loess surficial geology cover 0.10
cerc_den Local density of Superfund sites 0.00

Note: Individual variables are highlighted according to whether they were determined to be anthropogenic in nature (red highlight) or natural (green highlight).
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2.2.3 Variable functions

The BRT output also contains quantitative information on partial dependence functions that can be plotted to
visualize the effect of each individual predictor variable on the response after accounting for all other
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots
are not always a perfect representation of the relationship for each variable, particularly if interactions are
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for
interpretation (Friedman, 2001; Friedman and Meulman, 2003).

These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis)
changes. The response variable is transformed (usually to the logit scale) so that the magnitude of
trends for each predictor variable’s function plot can be accurately compared. The dash marks at the
top of each function represent the deciles of the data used to build the model. The function plots for
the nine most influential variables in the stream index model (see
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Table 2 for reference) are illustrated in Figure 4 below. The plots for all 44 variables are shown in Appendix B.
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Figure 4: Functional responses of the dependent variable to individual predictors of stream index
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2.3 Post-modeling

The variable importance table and partial dependence functions of the final BRT model were used to create
the post-modeling indices of natural habitat quality and anthropogenic stress for stream index. The CNQI was
comprised of 20 variables with relative influence greater than zero that were classified as natural habitat
features (Table 3). The CASI was comprised of ten variables with relative influence greater than zero that
were classified as anthropogenic habitat features (Table 4). To calculate the cumulative indices (i.e., CNQIl and
CASI), each of the individual natural or anthropogenic variables used in the two indices was converted to a
metric by first applying the appropriate transformations, based on their function plots, and then rescaling the
transformed measures to a 0 to 100 scale. To calculate the cumulative index from the individual metrics, the
metrics were first multiplied by their appropriate weighting factors (Table 3 and Table 4) and then summed.
The CNQI and CASI scores were a result of a rescaling of those weighted and summed metrics, again from 0
to 100.

2.3.1 Variable weights

Table 3 summarizes the relative influence values and the derived post-modeling weighting factors used in the
construction of the CNQI. The five most influential factors in the CNQI were:

e network drainage area,

e Level lll Ecoregion,

e mean annual air temperature,
e network baseflow index, and
e network C, C/D soil cover.

Table 4 summarizes the relative influence values and the derived post-modeling weighting factors used in the
construction of the CASI. The five most influential factors in the CASI were:

network density of cattle,

network riparian disturbance,
network impervious surface cover,
network rowcrop land cover, and
e network grassland land cover.
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Table 3: Relative influence and weights for natural variables on stream index

Variable Variable description Relative influence Weighting factor
cumdrainag Network drainage area 15.94 1
eco_code3 Level Il Ecoregion 12.94 0.81
temp Mean annual air temperature 6.18 0.39
BFI_meanc Network mean baseflow index 5.85 0.37
soil3pc Network soil group C, C/D cover 2.06 0.13
brock7pc Network shale bedrock geology cover 1.45 0.09
brocklpc Network carbonate bedrock geology cover 1.03 0.07
brocképc Network sandstone bedrock geology land cover 0.8 0.05
soil4pc Network soil group D cover 0.78 0.05
brock4pc Network metamorphic bedrock geology cover 0.75 0.05
surf4pc Network lacustrine surficial geology cover 0.51 0.03
soillpc Network soil group A, A/D cover 0.35 0.02
surf2pc Network outwash surficial geology cover 0.35 0.02
brock3pc Network mafic/igneous bedrock geology cover 0.33 0.02
surf7pc Network clay surficial geology cover 0.32 0.02
surfépc Network residuum surficial geology cover 0.25 0.02
surf3pc Network alluvium surficial geology cover 0.23 0.01
brock5pc Network sand/gravel bedrock geology cover 0.22 0.01
brock2pc Network felsic/igneous bedrock geology cover 0.21 0.01
surfSpc Network loess surficial geology cover 0.1 0.01

Table 4: Relative influence and weights for anthropogenic variables on stream index

Relative = Weighting

Variable Variable description influence factor
cattlec Network density of cattle 4.36 1
ripdispc Network riparian disturbance index 4.31 0.99
imp06¢c Network impervious surface cover 3.87 0.89
cropspc Network rowcrop land cover 2.92 0.67
grasspc Network grassland land cover 2.19 0.5
TRIc_den Network density of Toxic Release Inventory sites 1.69 0.39
damsc_den Local wetland land cover 1.67 0.38
ripdisp Local riparian disturbance 1.45 0.33
NPDESc_den Network density of National Pollutant Discharge Elimination System permits 0.55 0.13
dams_den Local density of dams 0.13 0.03

2.4 Mapped Results

2.4.1 Expected current conditions

Stream index was calculated for all 1:100k stream catchments in the study area using the BRT model. The
predicted probability values ranged from 0 to 87.9. The mean predicted stream index score for the total
226,919 catchments was 24.5. These results are mapped in Figure 5.
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Figure 5: Expected stream index score
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2.4.2 Spatial variability in predictive performance

Analyzing patterns of omission and commission may highlight regions where the model is performing well or
poorly or could suggest missing explanatory variables (Figure 6). To assess omission and commission,
residuals are also calculated by the BRT model. The residuals are a measure of the difference in the measured
and modeled values (measured value minus modeled value). Negative residuals indicate overpredictions
(predicting higher values than are true), while positive residuals indicate underpredictions (predicting lower
values than are true).

11|Page



Figure 6: Distribution of stream index model residuals by sampling site
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2.4.3 Indices of stress and natural quality

Maps of CNQI and CASI illustrate the spatial distribution of natural habitat potential (i.e., CNQI score) and
anthropogenic stress (i.e., CASI score) in the ORB and SARP. CNQI and CASI scores are mapped in Figure 7 and
Figure 8, respectively. The top five most influential variables toward the calculation of CNQI are shown in
Figure 9-Figure 13. The top five variables in the calculation of CASI are mapped in Figure 14-Figure 18. CNQJ,
CASI, and their metrics are all scaled on a 0-100 scale (see Section 2.3 for more details on CNQl and CASI
calculation). For CNQJ, higher values indicate higher natural quality, while higher values for CASI indicate
higher levels of anthropogenic stress.
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Figure 7: Cumulative natural quality index for small streams signature fish index
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Figure 8: Cumulative anthropogenic stress index for small streams signature fish index
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Figure 9: Most influential natural index metric for small streams signature fish index
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Figure 10: Second most influential natural index metric for small streams signature fish index
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Figure 11: Third most influential natural index metric for small streams signature fish index

New York

Wisconsin

Michigan

Pennsylvania

lowa New Jerse|

Missouri

North Carolina

South Carolina

Alabama Georgia

Arkansas —

Mean Annual Air Temperature Metric @ ORB boundary Map Description: Stream index model GNQI metics. | yigwest FHP Fish Habitat Assessment
Map depicts scores for 1:100k catchments. Metrics are

RP
0.000 - 0.020 @€ SARP boundary standardized zero to 100, with higher values indicating
) : ) ORB and SARP FHP
- 0.021 - 0.055 that the natural variable contributes to a higher stream Stream Index Model
- 0.056 - 0.090 index score, and vice versa.See text section 5.3 for Post-Modeling R
additional details regarding CNQI calculation. ost-Modeling Results
Map created by:

o Downstream Strategies
Jason Clingerman
Jan 04, 2012

0.091 -0.153
0.154 -0.222 SR o
0.223 - 100.000 -:-:—1 Miles ]

11|Page



Figure 12: Fourth most influential natural index metric for small streams signature fish index
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Figure 13: Fifth most influential natural index metric for small streams signature fish index
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Figure 14: Most influential anthropogenic index metric for small streams signature fish index
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Figure 15: Second most influential anthropogenic index metric for small streams signature fish index

' ' New York conng
Wisconsin . .
Michigan
Pennsylvania
= Y New Jerse|
Missouri
North Carolina
Arkansas
Georgia South Carolina

Network Riparian Disturbance Metric @€ ORB boundary Map Description: Stream index model CASI metric | Midwest FHP Fish Habitat Assessment
0-7 “ SARP boundary scores. CAS| scores are standardized zero to 100.
: Higher values indicate more that the variable is ORB and SARP FHP
8-13 contributing to lower stream index scores (high stress), 0
14-18 and vice versa, The map is at the 1:100k catchment Streafg lndij Ha”"fmaf?Mo?e"
- 19-27 scale. See text section 5.3 for additional details ost Modelling Results

regarding CASI calculation. Map created by

_ 28-58 0 Downstream Strategies

0 25 50 100 Jason Clingerman
59-100 - e e Miles N Jan 05, 2012

11|Page



Figure 16: Third most influential anthropogenic index metric for small streams signature fish index
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Figure 17: Fourth most influential anthropogenic index metric for small streams signature fish index
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Figure 18: Fifth most influential anthropogenic index metric for small streams signature fish index
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2.4.4 Restoration and protection priorities

A plot of CNQI versus CASI values for all catchments in the study area (Figure 19) can be used as a reference
when defining thresholds for categories of CNQI and CASI scores for use in the development of restoration
and protection priorities. In the example shown (Figure 20), thresholds for restoration (high natural potential
coupled with high anthropogenic stress) were set to CNQI greater than 43.8 and CASI greater than 43.9 (third
quartiles). The thresholds used for protection priorities (high natural potential and low anthropogenic stress)
were CNQI greater than 43.8 and CASI less than 31.0 (first quartile).

Figure 19: CNQI versus CASI values for all catchments for small streams signature fish index
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(green arrow) or restoration (red arrow) priority. The red box indicates catchments defined as restoration priorities under the example scenario. The green box
indicates catchments defined as protection priorities under the same scenario.
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Figure 20: Restoration and protection priorities for small streams signature fish index
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3. MODIFIED INDEX OF CENTERS OF DIVERSITY

3.1 Modeling inputs

DS used a list of predictor variables selected by ORB and SARP to develop a ten-fold CV BRT model for the
modified index of centers of diversity (“diversity index”) at the 1:100k catchment scale. The model was used
to produce maps of expected current diversity index scores and maps of expected current natural habitat
quality and anthropogenic stress at the 1:100k scale throughout the extents of both FHPs.

DS cooperated with ORB and SARP to arrive at a list of landscape-based habitat variables used to predict the
diversity index throughout the region; ultimately, those variables were also used for characterizing habitat
quality and anthropogenic stress. From an initial suite of 372 catchment attributes, DS and the FHPs compiled
a list of 103 predictors for evaluation. From that list, 58 variables were removed due to statistical redundancy
(r>0.6) or logical redundancy, resulting in a final list of 45 predictor variables for the BRT model and
assessment. See Appendix A for a full data dictionary and the metadata document for variable processing
notes.

ORB and SARP provided DS with a fish collection dataset comprised of 6,193 observations from 1996 to 2010.
From this pool of data, DS removed three observation points with duplicate observations per catchment.
After applying this initial filter, 6,190 observations were used to construct the diversity index BRT model.
Figure 21 maps all of the sampling sites that were used to construct the model and outlines all of the 1:100k
catchments to which the modeling outputs were applied.

The diversity index variable was fully processed by ORB and SARP prior to being transferred to DS. To
calculate the diversity index for each sample site in the data, a value was assigned based on the densities of
species at the site relative to the density of species across all sites used in the analysis (Bear, 2006; Patton,
2001). The diversity index was calculated based on Equation 1. The diversity index formula was calculated
separately for each stream size class with each Level Il Ecoregion. The index included only native species.

Equation 1: Modified index of centers of diversity

density of a species at a site

Relative density = - - - — -
sum density of the species at all sites within an ecoregion or stream order

Modified Index of Centers of Diversity = sum of the relative densities for all species at a site
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Figure 21: Modified index of centers of diversity modeling area and sampling sites
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3.2 Modeling process

3.2.1 Predictive performance

The final selected model was comprised of 4,150 trees. The model had a CV deviance statistic of 0.577+0.017
and a CV correlation statistic of 0.636+0.010.

3.2.2 Variable influence

The BRT output includes a list of the predictor variables used in the model ordered and scored by their
relative importance. The relative importance values are based on the number of times a variable is selected
for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over
all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores
for all variables is 100, where higher numbers indicate greater influence. Of the 45 predictor variables used to
develop the diversity index model, 44 had a relative influence value greater than zero (Table 5). The five most
influential predictors were all natural habitat variables and accounted for almost 54% of the total influence in
the model:

e network drainage area,

Level lll Ecoregion,

mean annual air temperature,
catchment slope, and

network mean baseflow index.

The five most influential anthropogenic stressors, which accounted for almost 13% of the total influence,
were:

e network rowcrop land cover,
network density of cattle,

network impervious surface cover,
network wetland land cover, and
network pasture land cover.

Network drainage area, the single most important variable in terms of relative influence, contributed more
than 25% of the total influence.
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Table 5: Relative influence of all variables in the final diversity index model

Variable code Variable description ~ Relative influence
cumdrainag Network drainage area 25.04
eco_code3 Level lll Ecoregion 17.66
temp Mean annual air temperature 5.06
slope Slope of catchment flowline 3.15
BFI_MEANC Network mean baseflow index 2.89
cropspc Network rowcrop land cover 2.83
brocképc Network sandstone bedrock geology land cover 2.80
cattlec Network density of cattle 2.80
precip Mean annual precipitation 2.66
imp06¢c Network impervious surface cover 2.56
wetlandpc Network wetland land cover 2.50
minelevraw Minimum catchment elevation 2.49
pastpc Network pasture land cover 2.20
water_swc Network surface water consumption 2.08
grasspc Network grassland land cover 1.94
ripdispc Network riparian disturbance index 1.75
water_gwc Network groundwater consumption 1.45
forpc Network forested land cover 1.43
roadcr_den Local density of road crossings 1.42
imp06 Local impervious surface cover 1.40
brock7pc Network shale bedrock geology cover 1.30
soil3pc Local soil group C,C/D cover 1.13
ripdisp Local riparian disturbance index 1.10
brocklpc Network carbonate bedrock geology cover 1.02
surf7pc Network clay surficial geology cover 1.01
surf3pc Network alluvium surficial geology cover 0.98
surf2pc Network outwash surficial geology cover 0.93
soil2pc Network soil group B, B/D cover 0.92
surf5pc Network loess surficial geology cover 0.91
soillpc Network soil group A, A/D cover 0.83
surfdpc Network lacustrine surficial geology cover 0.64
soildpc Network soil group D cover 0.54
brock5pc Network sand/gravel bedrock geology cover 0.52
brock4pc Network metamorphic bedrock geology cover 0.34
brock5p Local sand/gravel bedrock geology cover 0.31
TRI_den Local density of Toxic Release Inventory sites 0.29
surfépc Network residuum surficial geology cover 0.27
surf3p Local alluvium surficial geology cover 0.22
surf8p Local colluvium surficial geology cover 0.19
dams_den Local density of dams 0.15
mines_den Local density of mines 0.10
brock2pc Network felsic/igneous bedrock geology cover 0.10
brock3pc Network mafic/igneous bedrock geology cover 0.06
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.06
CERC_den Local density of Superfund sites 0.00

Note: Individual variables are highlighted according to whether they were determined to be anthropogenic in nature (red highlight) or natural (green highlight).
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3.2.3 Variable functions

The BRT output also contains quantitative information on partial dependence functions that can be plotted to
visualize the effect of each individual predictor variable on the response after accounting for all other
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots
are not always a perfect representation of the relationship for each variable, particularly if interactions are
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for
interpretation (Friedman, 2001; Friedman and Meulman, 2003).

These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis) changes. The
response variable is transformed (usually to the logit scale) so that the magnitude of trends for each
predictor variable’s function plot can be accurately compared. The dash marks at the top of each function
represent the deciles of the data used to build the model. The function plots for the nine most influential
variables in the diversity index model (see Table 5 for reference) are illustrated in Figure 22 below. The plots
for all 45 variables are shown in Appendix B.
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Figure 22: Functional responses of the dependent variable to individual predictors of diversity index
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3.3 Post-modeling

The variable importance table and partial dependence functions of the final BRT model were used to create
the post-modeling indices of natural habitat quality and anthropogenic stress for diversity index. The CNQI
was comprised of 27 variables with relative influence greater than zero that were classified as natural habitat
features (Table 6). The CASI was comprised of ten variables with relative influence greater than zero that
were classified as anthropogenic habitat features (Table 7). To calculate the cumulative indices (i.e., CNQIl and
CASI), each of the individual natural or anthropogenic variables used in the two indices was converted to a
metric by first applying the appropriate transformations, based on their function plots, and then rescaling the
transformed measures to a 0 to 100 scale. To calculate the cumulative index from the individual metrics, the
metrics were first multiplied by their appropriate weighting factors and then summed. The CNQI and CASI
scores were a result of a rescaling of those weighted and summed metrics, again from 0 to 100.

3.3.1 Variable weights

Table 6 summarizes the relative influence values and the derived post-modeling weighting factors used in the
construction of the CNQI. The five most influential factors in the CNQI were:

e network drainage area,

o Level lll Ecoregion,

mean annual air temperature,
slope of catchment flowline, and
network baseflow index.

Table 7 summarizes the relative influence values and the derived post-modeling weighting factors used in the
construction of the CASI. The five most influential factors in the CASI were:

e network impervious surface cover,
network wetland land cover,
network surface water consumption,
network grassland land cover, and
network groundwater consumption.
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Table 6: Relative influence and weights for natural variables on diversity index

Variable Variable description Relative influence Weighting factor
cumdrainag Network drainage area 25.04 1.00
eco_code3 Level lll Ecoregion 17.66 0.71
temp Mean annual air temperature 5.06 0.20
slope Slope of catchment flowline 3.15 0.13
BFI_meanc Network mean baseflow index 2.89 0.12
brocképc Network sandstone bedrock geology land cover 2.80 0.11
precip Mean annual precipitation 2.66 0.11
minelevraw Minimum catchment elevation 2.49 0.10
brock7pc Network shale bedrock geology cover 1.30 0.05
soil3pc Local soil group C,C/D cover 1.13 0.04
brocklpc Network carbonate bedrock geology cover 1.02 0.04
surf7pc Network clay surficial geology cover 1.01 0.04
surf3pc Network alluvium surficial geology cover 0.98 0.04
surf2pc Network outwash surficial geology cover 0.93 0.04
soil2pc Network soil group B, B/D cover 0.92 0.04
surfSpc Network loess surficial geology cover 0.91 0.04
soillpc Network soil group A, A/D cover 0.83 0.03
surfdpc Network lacustrine surficial geology cover 0.64 0.03
soil4pc Network soil group D cover 0.54 0.02
brock5pc Network sand/gravel bedrock geology cover 0.52 0.02
brock4pc Network metamorphic bedrock geology cover 0.34 0.01
brock5p Local sand/gravel bedrock geology cover 0.31 0.01
surfépc Network residuum surficial geology cover 0.27 0.01
surf3p Local alluvium surficial geology cover 0.22 0.01
surf8p Local colluvium surficial geology cover 0.19 0.01
brock2pc Network felsic/igneous bedrock geology cover 0.10 0.00
brock3pc Network mafic/igneous bedrock geology cover 0.06 0.00

Table 7: Relative influence and weights for anthropogenic variables on diversity index

Relative
Variable Variable description influence
imp06¢c Network impervious surface cover 2.56
wetlandpc Network wetland land cover 2.50
water_swc Network surface water consumption 2.08
grasspc Network grassland land cover 1.94
water_gwc Network groundwater consumption 1.45
forpc Network forested land cover 1.43
imp06 Local impervious surface cover 1.40
ripdisp Local riparian disturbance index 1.10
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.06
CERC_den Local density of Superfund sites 0.00

Weighting

factor
1.00
0.98
0.81
0.76
0.57
0.56
0.55
0.43
0.02
0.00
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3.4 Mapped Results

3.4.1 Expected current conditions

Diversity index scores were predicted for all 1:100k stream catchments in the study area using the BRT
model. The predicted probability values ranged from 0 to 100. The mean predicted value of the 225,541 total
catchments was 3.75. These results are mapped in Figure 23.
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Figure 23: Expected diversity index score
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3.4.2 Spatial variability in predictive performance

Analyzing patterns of omission and commission may highlight regions where the model is performing well or
poorly or could suggest missing explanatory variables (Figure 24). To assess omission and commission,
residuals are also calculated by the BRT model. The residuals are a measure of the difference in the measured
and modeled values (measured value minus modeled value). Negative residuals indicate overpredictions
(predicting higher values than are true), while positive residuals indicate underpredictions (predicting lower
values than are true).
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Figure 24: Distribution of diversity index model residuals by sampling site

Model residuals
<-258td. Dev.
-25--15 Std. Dev.
-1.5--0.50 Std. Dev.

-0.50 - 0.50 Std. Dev.

0.50 - 1.5 Std. Dev.
1.5-2.5 Std. Dev.
>2.5 Std. Dev.

Lake
Michigan

SARP boundary
ORB boundary

0 25 50 100

= e e Miles

Lake Eri

Map Description: MICD samples sites
symbolized by model residuals. Negative residuals
indicate overpredictions, while positive residuals
indicate underpredictions. Analyzing patterns of
omission and commission may highlight regions
where the model is performing well or poorly or
could suggest missing explanatory variables. See
text section 5.1 for additional details regarding
current condition maps.

Midwest FHP Fish Habitat Assessment

ORB and SARP FHP
MICD Model

Model Residuals

Map created by:
Downstream Strategies

Jason Clingerman
Dec 14, 2011

43 | Page



3.4.3 Indices of stress and natural quality

Maps of CNQI and CASI illustrate the spatial distribution of natural habitat potential (i.e., CNQI score) and
anthropogenic stress (i.e., CASI score) in the ORB and SARP. CNQI and CASI scores are mapped in Figure 25
and Figure 26, respectively. The top five most influential variables toward the calculation of CNQI are shown
in Figure 27-Figure 31. The top five variables contributing toward the calculation of CASI are mapped in
Figure 32-Figure 36. CNQI, CASI, and their metrics are all scaled on a 0-100 scale (see Section 3.3 for more
details on CNQI and CASI calculation). For CNQI, higher values indicate higher natural quality, while higher
values for CASI indicate higher levels of anthropogenic stress.
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Figure 25: Cumulative natural quality index for diversity index
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Figure 26: Cumulative anthropogenic stress index for diversity index
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Figure 27: Most influential natural index metric for diversity index
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Figure 28: Second most influential natural index metric for diversity index
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Figure 29: Third most influential natural index metric for diversity index
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Figure 30: Fourth most influential natural index metric for diversity index
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Figure 31: Fifth most influential natural index metric for diversity index
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Figure 32: Most influential anthropogenic index metric for diversity index
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Figure 33:

Second most influential anthropogenic index metric for diversity index
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Figure 34: Third most influential anthropogenic index metric for diversity index
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Figure 35: Fourth most influential anthropogenic index metric for diversity index
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Figure 36: Fifth most influential anthropogenic index metric for diversity index
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3.4.4 Restoration and protection priorities

A plot of CNQI versus CASI values for all catchments in the study area (Figure 37) can be used as a reference
when defining thresholds for categories of CNQI and CASI scores for use in the development of restoration
and protection priorities. In the example shown (Figure 38), thresholds for restoration (high natural potential
coupled with high anthropogenic stress) were set to CNQI greater than 31 (third quartile) and CASI greater
than 49 (third quartile). The thresholds used for protection priorities (high natural potential and low
anthropogenic stress) were CNQI greater than 31 and CASI less than 37 (first quartile).

Figure 37: CNQI versus CASI values for all catchments for diversity index
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Note: Breakpoints for CNQI and CASI classes in this example are denoted by dashed lines. The arrows indicate the directions of increasing potential protection
(green arrow) or restoration (red arrow) priority. The red box indicates catchments defined as restoration priorities under the example scenario. The green box
indicates catchments defined as protection priorities under the same scenario.
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Figure 38: Restoration and protection priorities for modified index of centers of diversity
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4. SMALLMOUTH BASS

4.1 Modeling inputs

DS used a list of predictor variables selected by ORB and SARP to develop a ten-fold CV BRT model for
smallmouth bass at the 1:100k catchment scale. The model was used to produce maps of expected current
smallmouth bass distribution and maps of expected current natural habitat quality and anthropogenic stress
at the 1:100k scale throughout the extents of both FHPs.

DS cooperated with ORB/SARP to arrive at a list of landscape-based habitat variables used to predict the
presence of smallmouth bass throughout the region; ultimately, those variables were also used for
characterizing habitat quality and anthropogenic stress. From an initial suite of 372 catchment attributes, DS
and the FHPs compiled a list of 92 predictors for evaluation. From that list, 46 variables were removed due to
statistical redundancy (r > 0.6) or logical redundancy, resulting in a final list of 46 predictor variables for the
BRT model and assessment. See Appendix A for a full data dictionary and the metadata document for
variable processing notes.

ORB and SARP provided DS with a presence-absence dataset for smallmouth bass comprised of 3,878
observations collected in catchments larger than 30 square kilometers in drainage area, but in segments with
stream order less than nine. Catchments less than 30 square kilometers in drainage area and catchments
with stream order greater than nine are known to be poor habitat for smallmouth bass. Samples were taken
over a time frame spanning 1996 to 2010. Figure 39 maps all of the sampling sites that were used to
construct the model and indicates the ORB and SARP boundaries to which the modeling outputs were
applied.
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Figure 39: Smallmouth bass modeling area and sampling sites
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4.2 Modeling process

4.2.1 Predictive performance

The final selected model was comprised of 2,850 trees. The model had a CV correlation statistic of
0.598+0.016, and a CV ROC score of 0.846+0.008. The CV correlation statistic indicates the mean correlation
resulting from each fold (ten in this case) of the cross-validation process.

4.2.2 Variable influence

The BRT output includes a list of the predictor variables used in the model ordered and scored by their
relative importance. The relative importance values are based on the number of times a variable is selected
for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over
all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores
for all variables is 100, where higher numbers indicate greater influence. Of the 46 predictor variables used to
develop the smallmouth bass model, 43 had a relative influence value greater than zero (Table 8). The five
most influential predictors were all natural habitat variables and accounted for almost 53% of the total
influence in the model:

network drainage area,

Level Ill Ecoregion,

mean annual air temperature,
network wetland land cover, and
e minimum catchment elevation.

The five most influential anthropogenic stressors, which accounted for over 11% of the total influence, were:

e network density of cattle,

e Local groundwater consumption,

e network surface water consumption,
e network forested land cover, and

e network density of dams.

Network drainage area, the single most important variable in terms of relative influence, contributed almost
18% of the total influence.
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Table 8: Relative influence of all variables in the final smallmouth bass model

Variable code Variable description Relative influence
cumdrainag Network drainage area 17.70
eco_code3 Level Ill Ecoregion 12.63
temp Mean annual air temperature 11.93
wetlandpc Network wetland land cover 5.33
minelevraw Minimum catchment elevation 5.15
brock7pc Network shale bedrock geology cover 3.38
slope Slope of catchment flowline 3.18
cattlec Network density of cattle 2.97
BFI_meanc Network mean baseflow index 2.74
water_gw Local groundwater consumption 2.63
water_swc Network surface water consumption 2.51
forpc Network forested land cover 2.34
damsc_den Network density of dams 2.13
cropspc Network rowcrop land cover 1.95
soil2pc Network soil type B, B/D cover 1.95
grasspc Network grassland land cover 1.86
brocklpc Network carbonate bedrock geology cover 1.85
soil4pc Network soil type D cover 1.84
pastpc Network pasture land cover 1.78
roadcrc_den Network density of road crossings 1.70
imp06¢c Network impervious surface cover 1.70
grassp Network grassland land cover 1.51
pastp Local pasture land cover 1.44
roadcr_den Local density of road crossings 1.36
imp06 Local Impervious surface cover 1.18
soil3pc Network soil type C,C/D cover 1.03
surf7pc Network clay surficial geology cover 0.81
soildp Local soil type D cover 0.64
surf3pc Network alluvium surficial geology cover 0.58
soillp Local soil type A, A/D cover 0.49
brock3pc Network mafic/igneous bedrock geology cover 0.34
soillpc Network soil type A, A/D cover 0.23
surfépc Network residuum surficial geology cover 0.21
dams_den Local density of dams 0.20
surf2pc Network Outwash surficial geology cover 0.18
brock5pc Network Sand/Gravel bedrock geology cover 0.17
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.10
mines_den Local density of mines 0.09
surf5pc Network loess surficial geology cover 0.09
surfdp Local lacustrine surficial geology cover 0.04
TRI_den Local density of Toxic Release Inventory sites 0.04
brock4p Local metamorphic bedrock geology cover 0.01
CERC_den Local density of Superfund sites 0.01
surf2p Local outwash surficial geology cover 0.00
brock2p Local felsic/igneous bedrock geology cover 0.00
brock3p Local mafic/igneous bedrock geology cover 0.00

Note: Individual variables are highlighted according to whether they were determined to be anthropogenic in nature (red highlight) or natural (green highlight).
62| Page



4.2.3 Variable functions

The BRT output also contains quantitative information on partial dependence functions that can be plotted to
visualize the effect of each individual predictor variable on the response after accounting for all other
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots
are not always a perfect representation of the relationship for each variable, particularly if interactions are
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for
interpretation (Friedman, 2001; Friedman and Meulman, 2003).

These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis) changes. The
response variable is transformed (usually to the logit scale) so that the magnitude of trends for each
predictor variable’s function plot can be accurately compared. The dash marks at the top of each function
represent the deciles of the data used to build the model. The function plots for the nine most influential
variables in the smallmouth bass model (see Table 8 for reference) are illustrated in Figure 40 below. The
plots for all 46 variables are shown in Appendix B.
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Figure 40: Functional responses of the dependent variable to individual predictors of smallmouth bass
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4.3 Post-modeling

The variable importance table and partial dependence functions of the final BRT model were used to create
the post-modeling indices of natural habitat quality and anthropogenic stress for smallmouth bass. The CNQI
was comprised of 24 variables with relative influence greater than zero that were classified as natural habitat
features (Table 9). The CASI was comprised of 13 variables with relative influence greater than zero that were
classified as anthropogenic habitat features (Table 10). To calculate the cumulative indices (i.e., CNQl and
CASI), each of the individual natural or anthropogenic variables used in the two indices was converted to a
metric by first applying the appropriate transformations, based on their function plots, and then rescaling the
transformed measures to a 0 to 100 scale. To calculate the cumulative index from the individual metrics, the
metrics were first multiplied by their appropriate weighting factors and then summed. The CNQI and CASI
scores were a result of a rescaling of those weighted and summed metrics, again from 0 to 100.

4.3.1 Variable weights

Table 9 summarizes the relative influence values and the derived post-modeling weighting factors used in the
construction of the CNQI. The five most influential factors in the CNQI were:

e network drainage area,

o Level lll Ecoregion,

mean annual air temperature,
network wetland land cover, and
minimum catchment elevation.

Table 10 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CASI. The five most influential factors in the CASI were:

e network density of cattle,

network forested land cover,
network density of dams,

network rowcrop land cover, and
network impervious surface cover.
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Table 9: Relative influence and weights for natural variables on smallmouth bass

Variable code Variable description Relative influence  Weighting factor
cumdrainag Network drainage area 17.70 1.00
eco_code3 Level lll Ecoregion 12.63 0.71
temp Mean annual air temperature 11.93 0.67
wetlandpc Network wetland land cover 5.33 0.30
minelevraw Minimum catchment elevation 5.15 0.29
brock7pc Network shale bedrock geology cover 3.38 0.19
slope Slope of catchment flowline 3.18 0.18
BFI_meanc Network mean baseflow index 2.74 0.15
soil2pc Network soil type B, B/D cover 1.95 0.11
brocklpc Network carbonate bedrock geology cover 1.85 0.10
soil4pc Network soil type D cover 1.84 0.10
soil3pc Network soil type C, C/D cover 1.03 0.06
surf7pc Network clay surficial geology cover 0.81 0.05
soildp Local soil type D cover 0.64 0.04
surf3pc Network alluvium surficial geology cover 0.58 0.03
soillp Local soil type A, A/D cover 0.49 0.03
brock3pc Network mafic/igneous bedrock geology cover 0.34 0.02
soillpc Network soil type A, A/D cover 0.23 0.01
surfépc Network residuum surficial geology cover 0.21 0.01
surf2pc Network outwash surficial geology cover 0.18 0.01
brock5pc Network sand/gravel bedrock geology cover 0.17 0.01
surfSpc Network loess surficial geology cover 0.09 0.01
surfdp Local lacustrine surficial geology cover 0.04 0.00
brock4p Local metamorphic bedrock geology cover 0.01 0.00

Table 10: Relative influence and weights for anthropogenic variables on smallmouth bass

Relative Weighting
Variable code Variable description influence factor
cattlec Network density of cattle 2.97 1.00
forpc Network forested land cover 2.34 0.79
damsc_den Network density of dams 2.13 0.72
cropspc Network rowcrop land cover 1.95 0.66
imp06¢c Network impervious surface cover 1.70 0.57
grassp Network grassland land cover 1.51 0.51
pastp Local pasture land cover 1.44 0.49
roadcr_den Local density of road crossings 1.36 0.46
imp06 Local Impervious surface cover 1.18 0.40
dams_den Local density of dams 0.20 0.07
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.10 0.03
mines_den Local density of mines 0.09 0.03
CERC_den Local density of Superfund sites 0.01 0.00
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4.4 Mapped Results

4.4.1 Expected current conditions

Smallmouth bass probability of presence was calculated for all 1:100k stream catchments in the study area
using the BRT model. The predicted probability values ranged from 0.002 to 1. The mean predicted
probability value for the 56,370 total catchments larger than 30 square kilometers in drainage area was
0.402. There were 16,170 catchments larger than 30 square kilometers in drainage area with a predicted
probability of presence greater than 0.75, and 6,527 catchments larger than 30 square kilometers in drainage
area where the probability of presence was between 0.5 and 0.75. These results are mapped in Figure 41.
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Figure 41: Expected smallmouth bass probability of presence
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4.4.2 Spatial variability in predictive performance

Analyzing patterns of omission and commission may highlight regions where the model is performing well or
poorly or could suggest missing explanatory variables (Figure 42). To assess omission and commission,
residuals are also calculated by the BRT model. The residuals are a measure of the difference in the measured
and modeled values (measured value minus modeled value). Negative residuals indicate overpredictions
(predicting higher values than are true), while positive residuals indicate underpredictions (predicting lower
values than are true).
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Figure 42: Distribution of smallmouth bass model residuals by sampling site
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4.4.3 Indices of stress and natural quality

Maps of CNQI and CASI illustrate the spatial distribution of natural habitat potential (i.e., CNQI score) and
anthropogenic stress (i.e., CASI score) in ORB and SARP. CNQI and CASI scores are mapped in Figure 43 and
Figure 44, respectively. The top five most influential variables toward the calculation of CNQI are shown in
Figure 45-Figure 49. The top four variables contributing toward the calculation of CASI are mapped in Figure
50-Figure 54. CNQI, CASI, and their metrics are all scaled on a 0-100 scale (see Section 4.3 for more details on
CNQI and CASI calculation). For CNQ, higher values indicate higher natural quality, while higher values for
CASI indicate higher levels of anthropogenic stress.
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Figure 43: Cumulative natural quality index for smallmouth bass
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Figure 44: Cumulative anthropogenic stress index for smallmouth bass
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Figure 45: Most influential natural index metric for smallmouth bass
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Figure 46: Second most influential natural index metric for smallmouth bass
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Figure 47: Third most influential natural index metric for smallmouth bass
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Figure 48: Fourth most influential natural index metric for smallmouth bass
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Figure 49: Fifth most influential natural index metric for smallmouth bass
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Figure 50: Most influential anthropogenic index metric for smallmouth bass
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Figure 51: Second most influential anthropogenic index metric for smallmouth bass

Wisconsin
Michigan

lowa

Missouri

Arkansas

Network Percent Forest Metric @ ORB boundary
0-10 € SARP boundary
1-19
20-26

|

B 44-69

70 - 100 0 25 50 100

- e e Miles

vonne

New Jerse|

North Carolina

South Carolina

Georgia

Map Description: Smallmouth bass model CAS|
metric scores. Map depicts scores for stream segments
with basin area > 30 square kilometers. CASI scores
are standardized zero to 100, with 100 being the "worst

Midwest FHP Fish Habitat Assessment

ORB and SARP FHP
Smallmouth Bass Habitat Model
Post Modelling Results

Map created by

Downstream Strategies

Jason Clingerman
Oct 10, 2011

anthrogenic stressor score and zero being the "best".
The map is at the 1:100k catchment scale. See text
section 5.3 for additional details regarding

CASI calculation.

80| Page



Figure 52: Third most influential anthropogenic index metric for smallmouth bass
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Figure 53: Fourth most influential anthropogenic index metric for smallmouth bass
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Figure 54: Fifth most influential anthropogenic index metric for smallmouth bass
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4.4.4 Restoration and protection priorities

A plot of CNQI versus CASI values for all catchments in the study area (Figure 55) can be used as a reference
when defining thresholds for categories of CNQI and CASI scores for use in the development of restoration
and protection priorities. In the example shown (Figure 56), thresholds for restoration (high natural potential
coupled with high anthropogenic stress) were set to CNQI greater than 58.8 and CASI greater than 31.2 (third
quartiles). The thresholds used for protection priorities (high natural potential and low anthropogenic stress)
were CNQI greater than 58.8 and CASI less than 19.3 (first quartile).

Figure 55: CNQI versus CASI values for all catchments for smallmouth bass
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(green arrow) or restoration (red arrow) priority. The red box indicates catchments defined as restoration priorities under the example scenario. The green box
indicates catchments defined as protection priorities under the same scenario.
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Figure 56: Restoration and protection priorities for smallmouth bass
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5. REDHORSE

5.1 Modeling inputs

DS used a list of predictor variables selected by ORB and SARP to develop a 10-fold CV BRT model for
redhorse at the 1:100k catchment scale. The model was used to produce maps of expected current redhorse
distribution and maps of expected current natural habitat quality and anthropogenic stress at the 1:100k
scale throughout the extents of both FHPs.

DS cooperated with ORB and SARP to arrive at a list of landscape-based habitat variables used to predict the
presence of smallmouth (Moxostoma breviceps), shorthead (Moxostoma macrolepidotum), and river
redhorse (Moxostoma carinatum) throughout the region; ultimately, those variables were also used for
characterizing habitat quality and anthropogenic stress. From an initial suite of 372 catchment attributes, DS
and the FHPs compiled a list of 92 predictors for evaluation. From that list, 42 variables were removed due to
statistical redundancy (r > 0.6) or logical redundancy, resulting in a final list of 50 predictor variables for the
BRT model and assessment. See Appendix A for a full data dictionary and the metadata document for
variable processing notes.

ORB and SARP provided DS with a presence-absence dataset for redhorse comprised of 2,857 observations
collected in streams between 47 and 45,000 square kilometers in drainage area and over a time frame
spanning 1996 to 2010. The goal of this model was to identify smaller streams that are important to redhorse
species. Taking that into consideration, streams with a drainage area less than 47 square kilometers were
excluded since they would not be expected to have redhorse species, and streams with a drainage area
greater than 45,000 square kilometers were excluded since redhorse species would naturally be expected
there. Figure 57 maps all of the sampling sites that were used to construct the model and outlines all of the
1:100k catchments to which the modeling outputs were applied.
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Figure 57: Redhorse modeling area and sampling sites
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5.2 Modeling process

5.2.1 Predictive performance

The final selected model was comprised of 1,650 trees. The model had a CV correlation statistic of
0.676%0.018, and a CV ROC score of 0.921+0.007.

5.2.2 Variable influence

The BRT output includes a list of the predictor variables used in the model ordered and scored by their
relative importance. The relative importance values are based on the number of times a variable is selected
for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over
all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores
for all variables is 100, where higher numbers indicate greater influence. Of the 50 predictor variables used to
develop the redhorse model, 44 had a relative influence value greater than zero (Table 11). The five most
influential predictors, which accounted for more than 64% of the total influence in the model, were:

network drainage area,

minimum catchment elevation,
mean annual air temperature,

e Level lll Ecoregion, and

o network density of Superfund sites.

The five most influential anthropogenic stressors, which accounted for nearly 11% of the total influence,
were:

network density of Superfund sites,
network density of cattle,

network surface water consumption,
network density of dams, and

o network density of road crossings.

The five most influential natural habitat variables, which contributed nearly 64% of the total influence, were:

e network drainage area,

e minimum catchment elevation,
e mean annual air temperature,
e Level lll Ecoregion, and

e network wetland land cover.

Network drainage area, the single most important variable in terms of relative influence, contributed almost
43% of the total influence.
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Table 11: Relative influence of all variables in the final redhorse model

Variable code Variable description Relative influence
cumdrainag Network drainage area 42.79
minelevraw Minimum catchment elevation 7.37
temp Mean annual air temperature 5.83
eco_code3 Level Ill Ecoregion 5.69
cercc_den Network density of Superfund sites 2.49
cattlec Network density of cattle 2.31
water_swc Network surface water consumption 2.29
damsc_den Network density of dams 2.09
wetlandpc Network wetland land cover 1.86
brock5pc Network sand/gravel bedrock geology cover 1.75
roadcrc_den Network density of road crossings 1.73
brock7pc Network shale bedrock geology cover 1.69
soil2pc Network soil type B, B/D cover 1.66
cropspc Network rowcrop land cover 1.64
forpc Network forested land cover 1.62
imp06 Local impervious surface cover 1.36
minesc_den Network density of mines 1.15
ripdisp Local riparian disturbance score 1.12
BFI_meanc Network mean baseflow index 1.11
imp06¢c Network impervious surface cover 1.09
slope Slope of catchment flowline 0.95
npdesc_den Network density of National Pollutant Discharge Elimination System permits 0.91
grasspc Network grassland land cover 0.91
grassp Network grassland land cover 0.88
pastp Local pasture land cover 0.83
roadcr_den Local density of road crossings 0.70
surfSpc Network loess surficial geology cover 0.65
soil3pc Network soil type C, C/D cover 0.63
TRI_den Local density of Toxic Release Inventory sites 0.63
brock3pc Network mafic/igheous bedrock geology cover 0.54
soildpc Network soil type D cover 0.47
brockép Network sandstone bedrock geology cover 0.46
pastpc Network pasture land cover 0.45
brocklpc Network carbonate bedrock geology cover 0.39
surf3pc Network alluvium surficial geology cover 0.36
surf2pc Network outwash surficial geology cover 0.29
soillpc Network soil type A, A/D cover 0.26
mines_den Local density of mines 0.25
surfdpc Network lacustrine surficial geology cover 0.22
surf7pc Network clay surficial geology cover 0.17
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.15
dams_den Local density of dams 0.12
surfépc Network residuum surficial geology cover 0.07
soildp Local soil type D cover 0.07
CERC_den Local density of Superfund sites 0.00
soillp Local soil type A, A/D cover 0.00
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brock2p Local felsic/igneous bedrock geology cover 0.00

brock3p Local mafic/igneous bedrock geology cover 0.00
brock4p Local metamorphic bedrock geology cover 0.00
surfdp Local lacustrine surficial geology cover 0.00

Note: Individual variables are highlighted according to whether they were determined to be anthropogenic in nature (red highlight) or natural (green highlight).

5.2.3 Variable functions

The BRT output also contains quantitative information on partial dependence functions that can be plotted to
visualize the effect of each individual predictor variable on the response after accounting for all other
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots
are not always a perfect representation of the relationship for each variable, particularly if interactions are
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for
interpretation (Friedman, 2001; Friedman and Meulman, 2003).

These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis) changes. The
response variable is transformed (usually to the logit scale) so that the magnitude of trends for each
predictor variable’s function plot can be accurately compared. The dash marks at the top of each function
represent the deciles of the data used to build the model. The function plots for the nine most influential
variables in the redhorse model (see Table 11 for reference) are illustrated in Figure 58 below. The plots for
all 50 variables are shown in Appendix B.
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Figure 58: Functional responses of the dependent variable to individual predictors of redhorse
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. See Appendix B for plots of remaining predictor variables.
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5.3 Post-modeling

The variable importance table and partial dependence functions of the final BRT model were used to create
the post-modeling indices of natural habitat quality and anthropogenic stress for redhorse. The CNQI was
comprised of 23 variables with relative influence greater than zero that were classified as natural habitat
features (Table 12). The CASI was comprised of 10 variables with relative influence greater than zero that
were classified as anthropogenic habitat features (Table 13). To calculate the cumulative indices (i.e., CNQI
and CASI), each of the individual natural or anthropogenic variables used in the two indices was converted to
a metric by first applying the appropriate transformations, based on their function plots, and then rescaling
the transformed measures to a 0 to 100 scale. To calculate the cumulative index from the individual metrics,
the metrics were first multiplied by their appropriate weighting factors and then summed. The CNQI and CASI
scores were a result of a rescaling of those weighted and summed metrics, again from 0 to 100.

5.3.1 Variable weights

Table 12 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CNQI. The five most influential factors in the CNQI were:

e network drainage area,

e minimum catchment elevation,
mean annual air temperature,
Level lll Ecoregion, and
network wetland land cover.

Table 13 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CASI. The five most influential factors in the CASI were:

e network density of cattle,

network density of dams,

local impervious surface cover,
local riparian disturbance, and
network impervious surface cover.
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Table 12: Relative influence and weights for natural variables on redhorse

Variable code Variable description Relative influence Weighting factor
cumdrainag Network drainage area 42.79 1.00
minelevraw Minimum catchment elevation 7.37 0.17
temp Mean annual air temperature 5.83 0.14
eco_code3 Level lll Ecoregion 5.69 0.13
wetlandpc Network wetland land cover 1.86 0.04
brock5pc Network sand/gravel bedrock geology cover 1.75 0.04
brock7pc Network shale bedrock geology cover 1.69 0.04
soil2pc Network soil type B, B/D cover 1.66 0.04
BFI_meanc Network mean baseflow index 1.11 0.03
slope Slope of catchment flowline 0.95 0.02
surfSpc Network loess surficial geology cover 0.65 0.02
soil3pc Network soil type C, C/D cover 0.63 0.01
brock3pc Network mafic/igneous bedrock geology cover 0.54 0.01
soildpc Network soil type D cover 0.47 0.01
brockép Network sandstone bedrock geology cover 0.46 0.01
brocklpc Network carbonate bedrock geology cover 0.39 0.01
surf3pc Network alluvium surficial geology cover 0.36 0.01
surf2pc Network outwash surficial geology cover 0.29 0.01
soillpc Network soil type A, A/D cover 0.26 0.01
surf4pc Network lacustrine surficial geology cover 0.22 0.01
surf7pc Network clay surficial geology cover 0.17 0.00
surfépc Network residuum surficial geology cover 0.07 0.00
soildp Local soil type D cover 0.07 0.00

Table 13: Relative influence and weights for anthropogenic variables on redhorse

Variable code  Variable description Relative influence Weighting factor
cattlec Network density of cattle 1.00 1.00
damsc_den Network density of dams 0.91 0.91
imp06 Local Impervious surface cover 0.59 0.59
ripdisp Local riparian disturbance score 0.49 0.49
imp06¢c Network impervious surface cover 0.47 0.47
grasspc Network grassland land cover 0.40 0.40
TRI_den Local density of Toxic Release Inventory sites 0.27 0.27
pastpc Network pasture land cover 0.19 0.19
mines_den Local density of mines 0.11 0.11
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.06 0.06
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5.4 Mapped Results

5.4.1 Expected current conditions

Redhorse probability of presence was calculated for all 1:100k stream catchments in the study area using the
BRT model. The predicted probability values ranged from 0.006 to 1. The mean predicted probability value
for the 45,450 total catchments larger than 47 square kilometers drainage area and smaller than 45,000
square kilometers drainage area was 0.114. There were 3,198 catchments larger than 47 square kilometers in
drainage area and smaller than 45,000 square kilometers with a predicted probability of presence greater
than 0.75; and 4,390 catchments larger than 47 square kilometers and smaller than 45,000 square kilometers
where the probability of presence was between 0.5 and 0.75. These results are mapped in Figure 59.
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Figure 59: Expected redhorse score
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5.4.2 Spatial variability in predictive performance

Analyzing patterns of omission and commission may highlight regions where the model is performing well or
poorly or could suggest missing explanatory variables (Figure 60). To assess omission and commission,
residuals are also calculated by the BRT model. The residuals are a measure of the difference in the measured
and modeled values (measured value minus modeled value). Negative residuals indicate overpredictions
(predicting higher values than are true), while positive residuals indicate underpredictions (predicting lower
values than are true).
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Figure 60: Distribution of redhorse model residuals by sampling site

Wisconsin
Michigan

<-2.5 Std. Dev. ®€ ORB boundary
25--155td. Dev. ®& SARP boundary
-1.5--0.50 Std. Dev.

-0.50 - 0.50 Std. Dev.

0.50 - 1.5 Std. Dev.

1.5- 2.5 Std. Dev.

> 2.5 Std. Dev. 0 25 50 100

= e e Viles

lowa
Missouri
YQ'E:ZQD i‘bnné u‘ﬂ o : :
.. % Tennessee ;| ,*" “
5B S el
° AN i .5 i
& s 4 “e“ F
Arkansas LR L '
Alabama

conne

Pennsylvania
y New Jerse

North Carolina

South Carolina

Georgia

Map Description: Redhorse species samples sites
symbolized by model residuals. Negative residuals
indicate overpredictions, while positive residuals
indicate underpredictions. Analyzing patterns of
omission and commission may highlight regions

Midwest FHP Fish Habitat Assessment

ORB and SARP FHP
Selected Redhorse Species Model
Model Residuals

Map created by:
Downstream Strategies
Jason Clingerman

Oct 14, 2011

where the model is performing well or poorly or
could suggest missing explanatory variables. See
text section 5.1 for additional details regarding
current condition maps.

97| Page



5.4.3 Indices of stress and natural quality

Maps of CNQI and CASI illustrate the spatial distribution of natural habitat potential (i.e., CNQI score) and
anthropogenic stress (i.e., CASI score) in the ORB and SARP. CNQI and CASI scores are mapped in Figure 61
and Figure 62, respectively. The top five most influential variables toward the calculation of CNQI are shown
in Figure 63-Figure 67. The top five variables contributing toward the calculation of CASI are mapped in
Figure 68-Figure 72. CNQI, CASI, and their metrics are all scaled on a 0-100 scale (see Section 5.3 for more
details on CNQI and CASI calculation). For CNQI, higher values indicate higher natural quality, while higher
values for CASI indicate higher levels of anthropogenic stress.
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Figure 61: Cumulative natural quality index for redhorse
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Figure 62: Cumulative anthropogenic stress index for redhorse
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Figure 63: Most influential natural index metric for redhorse
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Figure 64: Second most influential natural index metric for redhorse
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Figure 65: Third most influential natural index metric for redhorse
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Figure 66: Fourth most influential natural index metric for redhorse
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Figure 67: Fifth most influential natural index metric for redhorse
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Figure 68: Most influential anthropogenic index metric for redhorse
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Figure 69: Second most influential anthropogenic index metric for redhorse
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Figure 70: Third most influential anthropogenic index metric for redhorse
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Figure 71: Fourth most influential anthropogenic index metric for redhorse
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Figure 72: Fifth most influential anthropogenic index metric for redhorse
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5.4.4 Restoration and protection priorities

A plot of CNQI versus CASI values for all catchments in the study area (Figure 73) can be used as a reference
when defining thresholds for categories of CNQI and CASI scores for use in the development of restoration
and protection priorities. In the example shown (Figure 74), thresholds for restoration (high natural potential
coupled with high anthropogenic stress) were set to CNQI greater than 39.4 and CASI greater than 48.4 (third
quartiles). The thresholds used for protection priorities (high natural potential and low anthropogenic stress)
were CNQI greater than 39.4 and CASI less than 34.5 (first quartile).

Figure 73: CNQI versus CASI values for all catchments for redhorse
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Note: Breakpoints for CNQI and CASI classes in this example are denoted by dashed lines. The arrows indicate the directions of increasing potential protection
(green arrow) or restoration (red arrow) priority. The red box indicates catchments defined as restoration priorities under the example scenario. The green box
indicates catchments defined as protection priorities under the same scenario.
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Figure 74: Restoration and protection priorities for redhorse
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6. PERCENT INTOLERANT FISH

6.1 Modeling inputs

DS used a list of predictor variables selected by ORB and SARP to develop a ten-fold CV BRT model for
percent intolerant fish at the 1:100k catchment scale. The model was used to produce maps of expected
current percent intolerant fish distribution and maps of expected current natural habitat quality and
anthropogenic stress at the 1:100k scale throughout the extents of both FHPs.

DS cooperated with ORB and SARP to arrive at a list of landscape-based habitat variables used to predict
percent intolerant fish throughout the region; ultimately, those variables were also used for characterizing
habitat quality and anthropogenic stress. From an initial suite of 372 catchment attributes, DS and the FHPs
compiled a list of 92 predictors for evaluation. From that list, 46 variables were removed due to statistical
redundancy (r > 0.6) or logical redundancy, resulting in a final list of 46 predictor variables for the BRT model
and assessment. See Appendix A for a full data dictionary and the metadata document for variable processing
notes.

ORB and SARP provided DS with a dataset for percent intolerant fish comprised of 6,186 observations
collected over a time frame spanning 1996 to 2010. Intolerant fish in this analysis includes species that are
intolerant to human disturbance; a list of species considered intolerant can be found in Table 24 (located in
Appendix A). Figure 75 maps all of the sampling sites that were used to construct the model and outlines all
of the 1:100k catchments to which the modeling outputs were applied.
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Figure 75: Percent intolerant fish modeling area and sampling sites
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6.2 Modeling process

6.2.1 Predictive performance

The final selected model was comprised of 4,750 trees. The model had a CV correlation statistic of
0.683+0.005.

6.2.2 Variable influence

The BRT output includes a list of the predictor variables used in the model ordered and scored by their
relative importance. The relative importance values are based on the number of times a variable is selected
for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over
all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores
for all variables is 100, where higher numbers indicate greater influence. Of the 46 predictor variables used to
develop the percent intolerant fish model, 45 had a relative influence value greater than zero (Table 14). The
five most influential predictors were all natural habitat variables and accounted for over 51% of the total
influence in the model:

e network drainage area,
Level lll Ecoregion,

mean annual precipitation,
network baseflow index, and
slope of catchment flowline.

The five most influential anthropogenic stressors, which accounted for over 15% of the total influence, were:

e network forested land cover,

network pasture land cover,

network impervious surface cover,

o network surface water consumption, and
e network density of cattle.

Network drainage area, the single most important variable in terms of relative influence, contributed almost
15% of the total influence.
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Table 14: Relative influence of all variables in the final percent intolerant fish model

Variable code Variable description Relative influence
cumdrainag Network drainage area 14.77
eco_code3 Level Ill Ecoregion 12.85
precip Mean annual precipitation 8.95
BFI_meanc Network mean baseflow index 8.58
slope Slope of catchment flowline 6.08
forpc Network forested land cover 5.38
minelevraw Minimum catchment elevation 5.29
wetlandpc Network wetland land cover 3.55
pastpc Network pasture land cover 2.74
temp Mean annual air temperature 2.61
imp06¢c Network impervious surface cover 2.52
water_swc Network surface water consumption 2.44
soil2pc Network soil group B, B/D cover 2.43
cattlec Network density of cattle 2.41
ripdisp Local riparian disturbance index score 2.31
water_gwc Network groundwater consumption 2.19
roadcrc_den Network density of road crossings 1.83
brocképc Network sandstone bedrock geology land cover 1.78
grasspc Network grassland land cover 1.37
devp Local developed land cover 1.19
roadcr_den Local density of road crossings 1.07
cropspc Network rowcrop land cover 1.04
brock7pc Network shale bedrock geology cover 0.95
soil3pc Network soil group C,C/D cover 0.68
surf3pc Network alluvium surficial geology cover 0.67
damsc_den Network density of dams 0.55
brocklpc Network carbonate bedrock geology cover 0.48
surfdpc Network lacustrine surficial geology cover 0.43
brock4pc Network metamorphic bedrock geology cover 0.33
brock5pc Network sand/gravel bedrock geology cover 0.31
soil4pc Network soil group D cover 0.31
surfdp Local lacustrine surficial geology cover 0.29
surfépc Network residuum surficial geology cover 0.27
surf7pc Network clay surficial geology cover 0.26
dams_den Local density of dams 0.19
surf8p Local colluvium surficial geology cover 0.18
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.16
soildp Local soil group D cover 0.14
brock2p Local felsic/igneous bedrock geology cover 0.10
mines_den Local density of mines 0.09
surf5pc Network loess surficial geology cover 0.08
TRI_den Local density of Toxic Release Inventory sites 0.08
surf2p Local outwash surficial geology cover 0.04
brock3p Local mafic/igneous bedrock geology cover 0.01
brock4p Local metamorphic bedrock geology cover 0.01
CERC_den Local density of Superfund sites 0.00

Note: Individual variables are highlighted according to whether they were determined to be anthropogenic in nature (red highlight) or natural (green highlight).
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6.2.3 Variable functions

The BRT output also contains quantitative information on partial dependence functions that can be plotted to
visualize the effect of each individual predictor variable on the response after accounting for all other
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots
are not always a perfect representation of the relationship for each variable, particularly if interactions are
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for
interpretation (Friedman, 2001; Friedman and Meulman, 2003).

These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis) changes. The
response variable is transformed (usually to the logit scale) so that the magnitude of trends for each
predictor variable’s function plot can be accurately compared. The dash marks at the top of each function
represent the deciles of the data used to build the model. The function plots for the nine most influential
variables in the percent intolerant fish model (see Table 14 for reference) are illustrated in Figure 76 below.
The plots for all 46 variables are shown in Appendix B.
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Figure 76: Functional responses of the dependent variable to individual predictors of intolerant fish
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Note: Only the top nine predictors, based on relative influence (shown in parentheses; see Appendix A for descriptions of variable codes), are shown here. See Appendix B for plots of remaining predictor variables.
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6.3 Post-modeling

The variable importance table and partial dependence functions of the final BRT model were used to create
the post-modeling indices of natural habitat quality and anthropogenic stress for percent intolerant fish. The
CNQl was comprised of 28 variables with relative influence greater than zero that were classified as natural
habitat features (Table 15). The CASI was comprised of 8 variables with relative influence greater than zero
that were classified as anthropogenic habitat features (Table 16). To calculate the cumulative indices (i.e.,
CNQI and CASI), each of the individual natural or anthropogenic variables used in the two indices was
converted to a metric by first applying the appropriate transformations, based on their function plots, and
then rescaling the transformed measures to a 0 to 100 scale. To calculate the cumulative index from the
individual metrics, the metrics were first multiplied by their appropriate weighting factors and then summed.
The CNQI and CASI scores were a result of a rescaling of those weighted and summed metrics, again from 0
to 100.

6.3.1 Variable weights

Table 15 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CNQI. The five most influential factors in the CNQI were:

e network drainage area,

e Level lll Ecoregion,

e mean annual precipitation,

e network baseflow index, and
e slope of catchment flowline.

Table 16 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CASI. The five most influential factors in the CASI were:

network forested land cover,

network impervious surface cover,
network density of cattle,

network groundwater consumption, and
e local developed land cover.
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Table 15: Relative influence and weights for natural variables on intolerant fish

Variable code Variable description Relative influence Weighting factor
cumdrainag Network drainage area 14.77 1.00
eco_code3 Level lll Ecoregion 12.85 0.87
precip Mean annual precipitation 8.95 0.61
BFI_meanc Network mean baseflow index 8.58 0.58
slope Slope of catchment flowline 6.08 0.41
minelevraw Minimum catchment elevation 5.29 0.36
wetlandpc Network wetland land cover 3.55 0.24
temp Mean annual air temperature 2.61 0.18
soil2pc Network soil group B, B/D cover 2.43 0.16
brocképc Network sandstone bedrock geology land cover 1.78 0.12
brock7pc Network shale bedrock geology cover 0.95 0.06
soil3pc Network soil group C,C/D cover 0.68 0.05
surf3pc Network alluvium surficial geology cover 0.67 0.05
brocklpc Network carbonate bedrock geology cover 0.48 0.03
surfdpc Network lacustrine surficial geology cover 0.43 0.03
brock4pc Network metamorphic bedrock geology cover 0.33 0.02
brock5pc Network sand/gravel bedrock geology cover 0.31 0.02
soil4pc Network soil group D cover 0.31 0.02
surfdp Local lacustrine surficial geology cover 0.29 0.02
surfépc Network residuum surficial geology cover 0.27 0.02
surf7pc Network clay surficial geology cover 0.26 0.02
surf8p Local colluvium surficial geology cover 0.18 0.01
soildp Local soil group D cover 0.14 0.01
brock2p Local felsic/igneous bedrock geology cover 0.10 0.01
surf5pc Network loess surficial geology cover 0.08 0.01
surf2p Local outwash surficial geology cover 0.04 0.00
brock3p Local mafic/igneous bedrock geology cover 0.01 0.00
brock4p Local metamorphic bedrock geology cover 0.01 0.00

Table 16: Relative influence and weights for anthropogenic variables on intolerant fish

Variable code Variable description Relative influence Weighting factor
forpc Network forested land cover 5.38 1.00
imp06¢c Network impervious surface cover 2.52 0.47
cattlec Network density of cattle 2.41 0.45
water_gwc Network groundwater consumption 2.19 0.41
devp Local developed land cover 1.19 0.22
cropspc Network rowcrop land cover 1.04 0.19
mines_den Local density of mines 0.09 0.02
TRI_den Local density of Toxic Release Inventory sites 0.08 0.01
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6.4 Mapped Results

6.4.1 Expected current conditions

Percent intolerant fish was calculated for all 1:100k stream catchments in the study area using the BRT
model. The predicted values ranged from 0 to 100. The mean predicted value was for the 226,919 total
catchments was 7.5%. These results are mapped in Figure 77.
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Figure 77: Expected percent intolerant fish distribution
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6.4.2 Spatial variability in predictive performance

Analyzing patterns of omission and commission may highlight regions where the model is performing well or
poorly or could suggest missing explanatory variables (Figure 78). To assess omission and commission,
residuals are also calculated by the BRT model. The residuals are a measure of the difference in the measured
and modeled values (measured value minus modeled value). Negative residuals indicate overpredictions
(predicting higher values than are true), while positive residuals indicate underpredictions (predicting lower
values than are true).
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Figure 78: Distribution of percent intolerant fish model residuals by sampling site
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6.4.3 Indices of stress and natural quality

Maps of CNQI and CASI illustrate the spatial distribution of natural habitat potential (i.e., CNQI score) and
anthropogenic stress (i.e., CASI score) in the ORB and SARP. CNQI and CASI scores are mapped in Figure 79
and Figure 80, respectively. The top five most influential variables toward the calculation of CNQI are shown
in Figure 81-Figure 85. The top five variables contributing toward the calculation of CASI are mapped in
Figure 86-Figure 90. CNQI, CASI, and their metrics are all scaled on a 0-100 scale (see Section 6.3 for more
details on CNQI and CASI calculation). For CNQI, higher values indicate higher natural quality, while higher
values for CASI indicate higher levels of anthropogenic stress.
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Figure 79: Cumulative natural quality index for intolerant fish
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Figure 80: Cumulative anthropogenic stress index for intolerant fish
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Figure 81: Most influential natural index metric for intolerant fish
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Figure 82: Second most influential natural index metric for intolerant fish
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Figure 83: Third most influential natural index metric for intolerant fish
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Figure 84: Fourth most influential natural index metric for intolerant fish
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Figure 85: Fifth most influential natural index metric for intolerant fish
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Figure 86: Most influential anthropogenic index metric for intolerant fish
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Figure 87: Second most influential anthropogenic index metric for intolerant fish
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Figure 88: Third most influential anthropogenic index metric for intolerant fish
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Figure 89: Fourth most influential anthropogenic index metric for intolerant fish
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Figure 90: Fifth most influential anthropogenic index metric for intolerant fish
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6.4.4 Restoration and protection priorities

A plot of CNQI versus CASI values for all catchments in the study area (Figure 91) can be used as a reference
when defining thresholds for categories of CNQI and CASI scores for use in the development of restoration
and protection priorities. In the example shown (Figure 92), thresholds for restoration (high natural potential
coupled with high anthropogenic stress) were set to CNQI greater than 72.7 and CASI greater than 28.0 (third
quartiles). The thresholds used for protection (high natural potential and low anthropogenic stress) priorities
were CNQI greater than 72.7 and CASI less than 18.0 (first quartile).

Figure 91: CNQI versus CASI values for all catchments for intolerant fish
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Note: Breakpoints for CNQI and CASI classes in this example are denoted by dashed lines. The arrows indicate the directions of increasing potential protection
(green arrow) or restoration (red arrow) priority. The red box indicates catchments defined as restoration priorities under the example scenario. The green box
indicates catchments defined as protection priorities under the same scenario.
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Figure 92: Restoration and protection priorities for intolerant fish
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7. GREAT RIVERS SPECIES

7.1 Modeling inputs

DS used a list of predictor variables selected by ORB and SARP to develop a ten-fold CV BRT model for great
rivers species at the 1:100k catchment scale. The model was used to produce maps of expected current great
rivers species distribution and maps of expected current natural habitat quality and anthropogenic stress at
the 1:100k scale throughout the extents of both FHPs.

DS cooperated with ORB to arrive at a list of landscape-based habitat variables used to predict great rivers
species throughout the region; ultimately, those variables were also used for characterizing habitat quality
and anthropogenic stress. From an initial suite of 372 catchment attributes, DS and the FHPs compiled a list
of 91 predictors for evaluation. From that list, 41 variables were removed due to statistical redundancy (r >
0.6) or logical redundancy, resulting in a final list of 50 predictor variables for the BRT model and assessment.
See Appendix A for a full data dictionary and the metadata document for variable processing notes.

ORB provided DS with a presence-absence dataset for great rivers species comprised of 2,857 observations
collected in streams between than 47 and 45,000 square kilometers in drainage area and over a time frame
spanning 1996 to 2010. The goal of this model was to identify smaller streams that are important to great
rivers species. Taking that into consideration, streams with drainage area less than 47 square kilometers were
excluded since they would not be expected to have great rivers species, and streams with drainage area
greater than 45,000 square kilometers were excluded since great rivers species would naturally be expected
there. Table 17 lists the common and scientific names of the species considered as great rivers species. If any
one of the species on this list was encountered in a sample, the stream reach was considered to be a
presence. Figure 93 maps all of the sampling sites that were used to construct the model and outlines all of
the 1:100k catchments to which the modeling outputs were applied.

Table 17: Great rivers species list

Scientific name Common name

Acipenser fulvescens Lake sturgeon
Anguilla rostrata American eel
Atractosteus spatula Alligator gar
Cycleptus elongatus Blue sucker
Polyodon spathula Paddlefish
Sander canadensis Sauger
Scaphirhynchus albus Pallid sturgeon

Scaphirhynchus platorhynchus Shovelnose sturgeon
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Figure 93: Great rivers species modeling area and sampling sites
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7.2 Modeling process

7.2.1 Predictive performance

The final selected model was comprised of 3,050 trees. The model had a CV deviance statistic of 0.300+0.024,
a CV correlation statistic of 0.621+0.016, and a CV ROC score of 0.934+0.005.

7.2.2 Variable influence

The BRT output includes a list of the predictor variables used in the model ordered and scored by their
relative importance. The relative importance values are based on the number of times a variable is selected
for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over
all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores
for all variables is 100, where higher numbers indicate greater influence. Of the 50 predictor variables used to
develop the great rivers model, 43 had a relative influence value greater than zero (Table 18). The five most
influential predictors, which accounted for nearly 72% of the total influence in the model, were:

network drainage area,

local riparian disturbance,

network carbonate bedrock,
minimum catchment elevation, and
e mean annual air temperature.

The five most influential anthropogenic stressors, which accounted for over 22% of the total influence, were:

e local riparian disturbance,

e network surface water consumption,
o network density of Superfund sites,
e local impervious surface cover, and
e network pasture land cover.

The five most influential natural habitat variables, which contributed over 59% of the total influence, were:

e network drainage area,

network carbonate bedrock,
minimum catchment elevation,
mean annual air temperature, and
network B, B/D soil cover.

Network drainage area, the single most important variable in terms of relative influence, contributed almost
35% of the total influence.
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Table 18: Relative influence of all variables in the final great rivers species model

Variable code Variable description Relative influence
cumdrainag Network drainage area 34.35
ripdisp Local riparian disturbance index score 14.48
brocklpc Network carbonate bedrock geology cover 13.79
minelevraw Minimum catchment elevation 5.98
temp Mean annual air temperature 3.35
water_swc Network surface water consumption 2.35
cercc_den Network density of Superfund sites 2.22
imp06 Local impervious surface cover 2.04
soil2pc Network soil type B, B/D cover 1.84
eco_code3 Level lll Ecoregion 1.84
wetlandpc Network wetland land cover 1.60
pastpc Network pasture land cover 1.49
surf3pc Network alluvium surficial geology cover 1.27
soil3pc Network soil type C, C/D cover 0.92
imp06¢c Network impervious surface cover 0.85
BFI_meanc Network mean baseflow index 0.83
npdesc_den Network density of National Pollutant Discharge Elimination System permits 0.81
cropspc Network rowcrop land cover 0.79
dams_den Local density of dams 0.77
roadcrc_den Network density of road crossings 0.70
grasspc Network grassland land cover 0.64
TRI_den Local density of Toxic Release Inventory sites 0.62
slope Slope of catchment flowline 0.60
cattlec Network density of cattle 0.58
damsc_den Network density of dams 0.49
brock3pc Network mafic/igneous bedrock geology cover 0.49
pastp Local pasture land cover 0.49
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.45
soil4pc Network soil type D cover 0.44
forpc Network forested land cover 0.43
brock7pc Network shale bedrock geology cover 0.41
grassp Local grassland land cover 0.40
soillpc Network soil type A, A/D cover 0.35
brock5pc Network Sand/Gravel bedrock geology cover 0.35
roadcr_den Local density of road crossings 0.33
minesc_den Network density of mines 0.21
soildp Local soil type D cover 0.15
mines_den Local density of mines 0.06
surfdpc Network lacustrine surficial geology cover 0.06
surf2pc Network outwash surficial geology cover 0.05
surf7pc Network clay surficial geology cover 0.05
brockép Local sandstone bedrock geology cover 0.04
surfépc Network residuum surficial geology cover 0.02
CERC_den Local density of Superfund sites 0.00
soillp Local soil type A, A/D cover 0.00
brock2p Local felsic/igneous bedrock geology cover 0.00
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brock3p Local mafic/igneous bedrock geology cover 0.00

brock4p Local metamorphic bedrock geology cover 0.00
surfdp Local lacustrine surficial geology cover 0.00
surf5pc Network loess surficial geology cover 0.00

Note: Individual variables are highlighted according to whether they were determined to be anthropogenic in nature (red highlight) or natural (green highlight).

7.2.3 Variable functions

The BRT output also contains quantitative information on partial dependence functions that can be plotted to
visualize the effect of each individual predictor variable on the response after accounting for all other
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots
are not always a perfect representation of the relationship for each variable, particularly if interactions are
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for
interpretation (Friedman, 2001; Friedman and Meulman, 2003).

These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis) changes. The
response variable is transformed (usually to the logit scale) so that the magnitude of trends for each
predictor variable’s function plot can be accurately compared. The dash marks at the top of each function
represent the deciles of the data used to build the model. The function plots for the nine most influential
variables in the great rivers model (see Table 18 for reference) are illustrated in Figure 94 below. The plots for
all 50 variables are shown in Appendix B.
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Figure 94: Functional responses of the dependent variable to individual predictors of great rivers species
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7.3 Post-modeling

The variable importance table and partial dependence functions of the final BRT model were used to create
the post-modeling indices of natural habitat quality and anthropogenic stress for great rivers. The CNQl was
comprised of 22 variables with relative influence greater than zero that were classified as natural habitat
features (Table 19). The CASI was comprised of 9 variables with relative influence greater than zero that were
classified as anthropogenic habitat features (Table 20). To calculate the cumulative indices (i.e., CNQI and
CASI), each of the individual natural or anthropogenic variables used in the two indices was converted to a
metric by first applying the appropriate transformations, based on their function plots, and then rescaling the
transformed measures to a 0 to 100 scale. To calculate the cumulative index from the individual metrics, the
metrics were first multiplied by their appropriate weighting factors and then summed. The CNQI and CASI
scores were a result of a rescaling of those weighted and summed metrics, again from 0 to 100.

7.3.1 Variable weights

Table 19 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CNQI. The five most influential factors in the CNQI were:

e network drainage area,

e network carbonate bedrock,
minimum catchment elevation,
mean annual air temperature, and
network B, B/D soil cover.

Table 20 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CASI. The five most influential factors in the CASI were:

e local riparian disturbance,

local impervious surface cover,
network pasture land cover,

network impervious surface cover, and
network grassland land cover.

146 | Page



Table 19: Relative influence and weights for natural variables on great rivers species

Variable code Variable description Relative influence Weighting factor
Cumdrainag Network drainage area 34.35 1.00
Brocklpc Network carbonate bedrock geology cover 13.79 0.40
Minelevraw Minimum catchment elevation 5.98 0.17
Temp Mean annual air temperature 3.35 0.10
Soil2pc Network soil type B, B/D cover 1.84 0.05
Eco_code3 Level Ill Ecoregion 1.84 0.05
WETLANDPC Network wetland land cover 1.60 0.05
Surf3pc Network alluvium surficial geology cover 1.27 0.04
Soil3pc Network soil type C, C/D cover 0.92 0.03
BFI_MEANC Network mean baseflow index 0.83 0.02
Slope Slope of catchment flowline 0.60 0.02
Brock3pc Network mafic/igneous bedrock geology cover 0.49 0.01
Soildpc Network soil type D cover 0.44 0.01
Brock7pc Network shale bedrock geology cover 0.41 0.01
Soillpc Network soil type A, A/D cover 0.35 0.01
Brock5pc Network sand/gravel bedrock geology cover 0.35 0.01
Soildp Local soil type D cover 0.15 0.00
Surfdpc Network lacustrine surficial geology cover 0.06 0.00
Surf2pc Network outwash surficial geology cover 0.05 0.00
Surf7pc Network clay surficial geology cover 0.05 0.00
Brock6p Local sandstone bedrock geology cover 0.04 0.00
Surfépc Network residuum surficial geology cover 0.02 0.00

Table 20: Relative influence and weights for anthropogenic variables on great rivers species

Relative Weighting
Variable code  Variable description influence factor
Ripdisp Local riparian disturbance index score 14.48 1.00
imp06 Local impervious surface cover 2.04 0.14
Pastpc Network pasture land cover 1.49 0.10
imp06¢ Network impervious surface cover 0.85 0.06
Grasspc Network grassland land cover 0.64 0.04
TRI_den Local density of Toxic Release Inventory sites 0.62 0.04
Cattlec Network density of cattle 0.58 0.04
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.45 0.03
Forpc Network forested land cover 0.43 0.03
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7.5 Mapped Results

7.5.1 Expected current conditions

Great rivers species probability of presence was calculated for all 1:100k stream catchments in the study area
using the BRT model. The predicted probability values ranged from 0 to 1. The mean predicted probability
value for the 45,450 total catchments larger than 47 square kilometers drainage area and less than 45,000
square kilometers was 0.017. There were 1,314 catchments larger than 47 square kilometers and less than
45,000 square kilometers with a predicted probability of presence greater than 0.75, and 1,595 catchments
larger than 47 square kilometers and less than 45,000 square kilometers where the probability of presence
was between 0.5 and 0.75. These results are mapped in Figure 95.
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Figure 95: Expected great rivers species distribution
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7.5.2 Spatial variability in predictive performance

Analyzing patterns of omission and commission may highlight regions where the model is performing well or
poorly or could suggest missing explanatory variables (Figure 96). To assess omission and commission,
residuals are also calculated by the BRT model. The residuals are a measure of the difference in the measured
and modeled values (measured value minus modeled value). Negative residuals indicate overpredictions
(predicting higher values than are true), while positive residuals indicate underpredictions (predicting lower
values than are true).
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Figure 96: Distribution of great rivers species model residuals by sampling site

conne

Wisconsin
Michigan

lowa s 7 New Jerse

T8
g"c‘“ % oon
T |
X ek A
A
oy & i

& = 4
. = tIndiana." -

®

N Kent

ady w0 8

ucky, ‘.

Missouri

o @

North Carolina

o B
.. % Tennessee § .7.“+ -
B e e L

Arkansas

South Carolina

m :

<-2.5 Std. Dev. ®€ ORB boundary Map Description: Great rivers samples sites Midwest FHP Fish Habitat Assessment
symbolized by model residuals. Negative residuals

-2.5--1.5 Std. Dev. “ SARP boundary indicate overpredictions, while positive residuals ORB and SARP FHP
AN indicate underpredictions. Analyzing patterns of .

1.5--0.50 Std. Dev. omission and commission may highlight regions Great Rivers Mode[
-0.50 - 0.50 Std. Dev. where the model is performing well or poorly or Model Residuals
could suggest missing explanatory variables. See Map created by:

text section 5.1 for additional details regarding Downstream Strategies
Jason Clingerman

0.50 - 1.5 Std. Dev.

> 1.5 Std. Dev. - — Viles current condition maps. Oct 14, 2011

0 25 50 100

151 |Page



7.5.3 Indices of stress and natural quality

Maps of CNQI and CASI illustrate the spatial distribution of natural habitat potential (i.e., CNQI score) and
anthropogenic stress (i.e., CASI score) in the ORB and SARP. CNQI and CASI scores are mapped in Figure 97
and Figure 98, respectively. The top five most influential variables toward the calculation of CNQI are shown
in Figure 99-Figure 103. The top five variables contributing toward the calculation of CASI are mapped in
Figure 104-Figure 108. CNQI, CASI, and their metrics are all scaled on a 0-100 scale (see Section 7.3 for more
details on CNQI and CASI calculation). For CNQI, higher values indicate higher natural quality, while higher
values for CASI indicate higher levels of anthropogenic stress.
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Figure 97: Cumulative natural quality index for great rivers species
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Figure 98: Cumulative anthropogenic stress index for great rivers species
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Figure 99: Most influential natural index metric for great rivers species
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Figure 100: Second most influential natural index metric for great rivers species
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Figure 101: Third most influential natural index metric for great rivers species

conneg|
Wisconsin ew York
Michigan 0 2
towa New Jerse|
e
Missouri
North Carolina
Arkansas
South Carolina

Catchment Elevation Metric @ ORB boundary Ma‘Descrition: Gregt rivers species model CNQI [ prisvwact FHP Fish Habitat Assessment
0-10 “ SARP boundary m‘etrlc scores. Map depicts scores for slrear_n segments
with basin area > 47 and < 45,000 square kilometers. ORB and SARP FHP
- 11-26 CNQI scores are standardized zero to 100, with
- 27 -42 100 being the "best" natural habitat quality score and

43-58

Great Rivers Species Habitat Model

zero being the "worst". The map is at the 1:100k Post Modelling Results
catchment scale. See text section 5.3 for additional Map created by:
59-75 o details regarding CNQI calculation. Downstream Strategies

0 25 50 100 Jason Clingerman
76-100 - — \Viles N Oct 17, 2011

157 |Page



Figure 102: Fourth most influential natural index metric for great rivers species
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Figure 103: Fifth most influential natural index metric for great rivers species
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Figure 104: Most influential anthropogenic index metric for great rivers species

Wisconsin
Michigan
lowa
Missouri
North Carolina
Arkansas
South Carolina

T | Local Riparian Disturbance Metric € ORB boundary Map Description: Great rivers species model CAS| | pidwest FHP Fish Habitat Assessment

g 0-15 “ SARP boundary rn.elrlc scores. Map depicts scores for siream segments

3 with basin area > 47 and < 45,000 square kilometers. ORB and SARP FHP
16 - 28 CAS| scores are standardized zero to 100, with zero
29138 being the "best" stressor score and 100 being the

Great Rivers Species Habitat Model

- 3949 "worst". The map is at the 1:100k catchment scale. Post Modelling Results
i See text section 5.3 for additional details regarding Map created by:

- 50-74 CASI calculation. Downstream Strategies
0 Jason Clingerman
75-100 - e Miles Oct 17, 2011

160 | Page



Figure 105: Second most influential anthropogenic index metric for great rivers species
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Figure 106: Third most influential anthropogenic index metric for great rivers species
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Figure 107: Fourth most influential anthropogenic index metric for great rivers species
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Figure 108: Fifth most influential anthropogenic index metric for great rivers species
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7.5.4 Restoration and protection priorities

A plot of CNQI versus CASI values for all catchments in the study area (Figure 109) can be used as a reference
when defining thresholds for categories of CNQI and CASI scores for use in the development of restoration
and protection priorities. In the example shown (Figure 110), thresholds for restoration (high natural
potential coupled with high anthropogenic stress) were set to CNQI greater than 40.5 and CASI greater than
39.9 (third quartiles). The thresholds used for protection (high natural potential and low anthropogenic
stress) priorities were CNQI greater than 40.5 and CASI less than 26.4 (first quartile).

Figure 109: CNQI versus CASI values for all catchments for great rivers species
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Note: Breakpoints for CNQI and CASI classes in this example are denoted by dashed lines. The arrows indicate the directions of increasing potential protection
(green arrow) or restoration (red arrow) priority. The red box indicates catchments defined as restoration priorities under the example scenario. The green box
indicates catchments defined as protection priorities under the same scenario.
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Figure 110: Restoration and protection priorities for great rivers species
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8. INTOLERANT MUSSELS

8.1 Modeling inputs

DS used a list of predictor variables selected by ORB and SARP to develop a ten-fold CV BRT model for
intolerant mussels at the 1:100k catchment scale. The model was used to produce maps of expected current
intolerant mussel distribution and maps of expected current natural habitat quality and anthropogenic stress
at that scale throughout the extents of both FHPs.

DS cooperated with ORB and SARP to arrive at a list of landscape-based habitat variables used to predict the
presence of intolerant mussels throughout the region; ultimately, those variables were also used for
characterizing habitat quality and anthropogenic stress. From an initial suite of 372 catchment attributes, DS
and the FHPs compiled a list of 92 predictors for evaluation. From that list, 47 variables were removed due to
statistical redundancy (r > 0.6) or logical redundancy, resulting in a final list of 45 predictor variables for the
BRT model and assessment. See Appendix A for a full data dictionary and the metadata document for
variable processing notes.

ORB and SARP provided DS with a presence-absence dataset for intolerant mussels comprised of 3,341
observations collected in streams. Intolerant mussels in this analysis are defined as those species that are
intolerant to human disturbance; a list of those species considered intolerant can be found in Table 25
(located in Appendix A).These samples were taken over a time frame spanning 1996 to 2010. Figure 111
maps all of the sampling sites that were used to construct the model and indicates the ORB and SARP
boundaries to which the modeling outputs were applied.
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Figure 111: Intolerant mussels modeling area and sampling sites
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8.2 Modeling process

8.2.1 Predictive performance

The final selected model was comprised of 1,800 trees. The model had a CV correlation statistic of
0.605+0.007, and a CV ROC score of 0.845+0.004. The CV correlation statistic indicates the mean correlation
resulting from each fold (ten in this case) of the cross-validation process.

8.2.2 Variable influence

The BRT output includes a list of the predictor variables used in the model ordered and scored by their
relative importance. The relative importance values are based on the number of times a variable is selected
for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over
all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores
for all variables is 100, where higher numbers indicate greater influence. Of the 45 predictor variables used to
develop the intolerant mussel model, all had a relative influence value greater than zero (Table 21). The five
most influential predictors, which accounted for almost 40% of the total influence in the model, were:

e network drainage area,

e network baseflow index,

e mean annual precipitation,

e network density of dams, and
e network alluvium cover.

The five most influential anthropogenic stressors, which accounted for over 19% of the total influence, were:

e network dam density,

network surface water consumption,
network forested land cover,

network density of road crossings, and
local impervious surface cover.

The five most influential natural habitat variables, which contributed over 39% of the total influence, were:

network drainage area,
network baseflow index,
mean annual precipitation,
network alluvium cover, and
network shale bedrock.

Network drainage area, the single most important variable in terms of relative influence, contributed over
12% of the total influence.
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Table 21: Relative influence of all variables in the final intolerant mussel model

Variable code Variable description Relative influence
cumdrainag Network drainage area 12.39
BFI_meanc Network mean baseflow index 8.23
precip Mean annual precipitation 8.12
damsc_den Network density of dams 5.98
surf3pc Network alluvium surficial geology cover 5.27
brock7pc Network shale bedrock geology cover 5.17
water_swc Network surface water consumption 5.02
soil4pc Network soil type D cover 4.2
minelevraw Minimum catchment elevation 4.02
forpc Network forested land cover 2.97
roadcrc_den Network density of road crossings 2.89
imp06 Local impervious surface cover 2.71
imp06¢c Network impervious surface cover 2.65
grasspc Network grassland land cover 2.64
soil2pc Network soil type B, B/D cover 2.45
pastp Network pasture land cover 2.43
cropsp Network rowcrop land cover 2.17
tric_den Network density of Toxic Release Inventory sites 2.16
pastpc Network pasture land cover 1.96
wetlandp Local wetland land cover 1.74
slope Slope of catchment flowline 1.49
surfépc Network residuum surficial geology cover 1.45
popdens Local population density 1.45
brock5pc Network sand/gravel bedrock geology cover 1.2
soil2p Local soil type B, B/D cover 1.01
water_gwc Local groundwater consumption 0.98
ripdisp Local riparian disturbance 0.97
roadcr_den Local density of road crossings 0.97
cercc_den Network density of Superfund sites 0.65
dams_den Local density of dams 0.64
surf2pc Network outwash surficial geology cover 0.64
grassp Local grassland land cover 0.61
soildp Local soil type D cover 0.52
minesc_den Network density of mines 0.46
soillpc Network soil type A, A/D cover 0.46
brocklp Local carbonate bedrock geology cover 0.38
surfdpc Network lacustrine surficial geology cover 0.29
brock2pc Network felsic/igneous bedrock geology cover 0.2
surf8p Network colluvium surficial geology cover 0.16
soillp Local soil type A, A/D cover 0.13
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.08
TRI_den Local density of Toxic Release Inventory sites 0.05
surf5pc Network loess surficial geology cover 0.04
surflp Local till surficial geology cover 0.03
surfép Local residuum surficial geology cover 0.01

Note: Individual variables are highlighted according to whether they were determined to be anthropogenic in nature (red highlight) or natural (green highlight).
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8.2.3 Variable functions

The BRT output also contains quantitative information on partial dependence functions that can be plotted to
visualize the effect of each individual predictor variable on the response after accounting for all other
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots
are not always a perfect representation of the relationship for each variable, particularly if interactions are
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for
interpretation (Friedman, 2001; Friedman and Meulman, 2003).

These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis) changes. The
response variable is transformed (usually to the logit scale) so that the magnitude of trends for each
predictor variable’s function plot can be accurately compared. The dash marks at the top of each function
represent the deciles of the data used to build the model. The function plots for the nine most influential
variables in the intolerant mussel model (see Table 21 for reference) are illustrated in Figure 112 below. The
plots for all 46 variables are shown in Appendix B.
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Figure 112: Functional responses of the dependent variable to individual predictors of intolerant mussels
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Note: Only the top nine predictors, based on relative influence (shown in parentheses; see Appendix A for descriptions of variable codes), are shown here. See Appendix B for plots of remaining predictor variables.
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8.3 Post-modeling

The variable importance table and partial dependence functions of the final BRT model were used to create
the post-modeling indices of natural habitat quality and anthropogenic stress for Intolerant mussels. The
CNQl was comprised of 23 variables with relative influence greater than zero that were classified as natural
habitat features (Table 22). The CASI was comprised of 16 variables with relative influence greater than zero
that were classified as anthropogenic habitat features (Table 23). To calculate the cumulative indices (i.e.,
CNQI and CASI), each of the individual natural or anthropogenic variables used in the two indices was
converted to a metric by first applying the appropriate transformations, based on their function plots, and
then rescaling the transformed measures to a 0 to 100 scale. To calculate the cumulative index from the
individual metrics, the metrics were first multiplied by their appropriate weighting factors and then summed.
The CNQI and CASI scores were a result of a rescaling of those weighted and summed metrics, again from 0
to 100.

8.3.1 Variable weights

Table 22 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CNQI. The five most influential factors in the CNQI were:

e network drainage area,

e network baseflow index,

e mean annual precipitation,
e network alluvium cover, and
e network shale bedrock.

Table 23 summarizes the relative influence values and the derived post-modeling weighting factors used in
the construction of the CASI. The five most influential factors in the CASI were:

network density of dams,

network surface water consumption,
network forested land cover,

local impervious surface cover, and
e network impervious surface cover.
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Table 22: Relative influence and weights for natural variables on intolerant mussels

Variable code Variable description Relative influence = Weighting factor
cumdrainag Network drainage area 12.39 1
BFI_meanc Network mean baseflow index 8.23 0.66
precip Mean annual precipitation 8.12 0.66
surf3pc Network alluvium surficial geology cover 5.27 0.43
brock7pc Network shale bedrock geology cover 5.17 0.42
soildpc Network soil type D cover 4.2 0.34
minelevraw Minimum catchment elevation 4.02 0.33
soil2pc Network soil type B, B/D cover 2.45 0.2
slope Slope of catchment flowline 1.49 0.12
surfépc Network residuum surficial geology cover 1.45 0.12
brock5pc Network sand/gravel bedrock geology cover 1.2 0.1
soil2p Local soil type B, B/D cover 1.01 0.08
surf2pc Network outwash surficial geology cover 0.64 0.05
soildp Local soil type D cover 0.52 0.04
soillpc Network soil type A, A/D cover 0.46 0.04
brocklp Local carbonate bedrock geology cover 0.38 0.03
surfdpc Network lacustrine surficial geology cover 0.29 0.02
brock2pc Network felsic/igneous bedrock geology cover 0.2 0.02
surf8p Network colluvium surficial geology cover 0.16 0.01
soillp Local soil type A, A/D cover 0.13 0.01
surfSpc Network loess surficial geology cover 0.04 0
surflp Local till surficial geology cover 0.03 0
surfép Local residuum surficial geology cover 0.01 0

Table 23: Relative influence and weights for anthropogenic variables on intolerant mussels

Relative Weighting

Variable code  Variable description influence factor
damsc_den Network density of dams 5.98 1
water_swc Network surface water consumption 5.02 0.84
forpc Network forested land cover 2.97 0.5
imp06 Local Impervious surface cover 2.71 0.45
imp06¢c Network impervious surface cover 2.65 0.44
pastp Network pasture land cover 2.43 0.41
cropsp Network rowcrop land cover 2.17 0.36
pastpc Network pasture land cover 1.96 0.33
wetlandp Local wetland land cover 1.74 0.29
popdens Local population density 1.45 0.24
water_gwc Local groundwater consumption 0.98 0.16
ripdisp Local riparian disturbance 0.97 0.16
cercc_den Network density of Superfund sites 0.65 0.11
dams_den Local density of dams 0.64 0.11
minesc_den Network density of mines 0.46 0.08
NPDES_den Local density of National Pollutant Discharge Elimination System permits 0.08 0.01
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8.4 Mapped Results

8.4.1 Expected current conditions

Intolerant mussel probability of presence was calculated for all 1:100k stream catchments in the study area
using the BRT model. The predicted probability values ranged from 0.002 to 1. The mean predicted
probability value for the 226,919 total catchments was 0.375. There were 24,129 catchments with a
predicted probability of presence greater than 0.75, and 42,830 catchments where the probability of
presence was between 0.5 and 0.75. These results are mapped in Figure 113.
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Figure 113: Expected intolerant mussels distribution
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8.4.2 Spatial variability in predictive performance

Analyzing patterns of omission and commission may highlight regions where the model is performing well or
poorly or could suggest missing explanatory variables (Figure 114). To assess omission and commission,
residuals are also calculated by the BRT model. The residuals are a measure of the difference in the measured
and modeled values (measured value minus modeled value). Negative residuals indicate overpredictions
(predicting higher values than are true), while positive residuals indicate underpredictions (predicting lower
values than are true).
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Figure 114: Distribution of intolerant mussel model residuals by sampling site
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8.4.3 Indices of stress and natural quality

Maps of CNQI and CASl illustrate the spatial distribution of natural habitat potential (i.e., CNQI score) and
anthropogenic stress (i.e., CASI score) in ORB and SARP. CNQI and CASI scores are mapped in Figure 115 and
Figure 116, respectively. The top five most influential variables toward the calculation of CNQI are shown in
Figure 117-Figure 121. The top five variables contributing toward the calculation of CASI are mapped in
Figure 122-Figure 126. CNQI, CASI, and their metrics are all scaled on a 0-100 scale (see Section 8.3 for more
details on CNQI and CASI calculation). For CNQI, higher values indicate higher natural quality, while higher
values for CASI indicate higher levels of anthropogenic stress.
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Figure 115: Cumulative natural quality index for intolerant mussels
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Figure 116: Cumulative anthropogenic stress index for intolerant mussels
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Figure 117: Most influential natural index metric for intolerant mussels
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Figure 118: Second most influential natural index metric for intolerant mussels
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Figure 119: Third most influential natural index metric for intolerant mussels

Wisconsin New York

Michigan

lowa

New J/e}sei

Delaware

Missouri
1Y

Arkansas ‘ )

North Carolina

South Carolina

Mean Annual Precipitation Metric @ ORB boundary Map Description:Catchments symbolized by Midwest FHP Fish Habitat Assessment
0-67 “ SARP boundary cumulative natural quality index (CNQI) metrics.

i Higher values indicate "better" natural conditions for ORB and SARP FHP

- 68-70 intolerant mussel presence. Lower values indicate that Intolerant Mussel Habitat Model

- 7-73 natural conditions are less favorable for intolerant

' Post Modelling Results
74 - 80 mussel habitation.

Map created by:

81-86 0 Downstream Strategies

0 25 50 100 Jason Clingerman
87-100 e — Miles N Dec 30, 2011

184 |Page



Figure 120: Fourth most influential natural index metric for intolerant mussels
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Figure 121: Fifth most influential natural index metric for intolerant mussels
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Figure 122: Most influential anthropogenic index metric for intolerant mussels
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Figure 123: Second most influential anthropogenic index metric for intolerant mussels
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Figure 124: Third most influential anthropogenic index metric for intolerant mussels
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Figure 125: Fourth most influential anthropogenic index metric for intolerant mussels
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Figure 126: Fifth most influential anthropogenic index metric for intolerant mussels
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8.4.4 Restoration and protection priorities

A plot of CNQI versus CASI values for all catchments in the study area (Figure 127) can be used as a reference
when defining thresholds for categories of CNQI and CASI scores for use in the development of restoration
and protection priorities. In the example shown (Figure 128), thresholds for restoration (high natural
potential coupled with high anthropogenic stress) were set to CNQI greater than 49.3 and CASI greater than
47.0 (third quartiles). The thresholds used for protection (high natural potential and low anthropogenic
stress) priorities were CNQI greater than 49.3 and CASI less than 38.8 (first quartile).

Figure 127: CNQI versus CASI values for all catchments for intolerant mussels
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(green arrow) or restoration (red arrow) priority. The red box indicates catchments defined as restoration priorities under the example scenario. The green box
indicates catchments defined as protection priorities under the same scenario.
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Figure 128: Restoration and protection priorities for intolerant mussels
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9. LIMITATIONS AND SUGGESTIONS FOR FUTURE WORK

In general, while the estimates of probability of presence, index scores, CNQI, and CASI generated through
this assessment process represent a useful and objective means for assessing aquatic habitat and prioritizing
habitats for restoration or protection, there are some limitations that are important to consider. Results
generated through the modeling process are ultimately limited by the quality of data used to generate them.
In the future, the model can be improved by improving the resolution and precision of the data. For example,
some county-level data were used as predictor variables although the data likely generalize conditions at the
catchment scale. In some cases, this resulted in generalizations in CASI or in the individual CASI metrics,
which is evidenced by the visibly unnatural hard break lines at some county boundaries. Although these
variables—such as network cattle density and network surface water consumption—were limited in spatial
resolution, they still had high relative influence in the BRT model and were important to retain for predictive
performance. In the future, refinement of these county-level variables or inclusion of higher resolution
surrogates could improve both the precision of the BRT model predictions and post-modeling indices.

A second limitation is that the data and maps represent only a snapshot in time. Therefore, the models may
not represent conditions before or after the data were collected or created. For example, any habitat lost or
gained due to increased impervious surface cover since the 2006 National Land Cover Database (NLCD) was
not considered in this assessment. Similarly, a portion of the uncertainty can be attributable to the temporal
mismatches between the fish collection data and landscape data. As such, improving the temporal match
between those datasets for future work would be beneficial.

Although the BRT statistical modeling algorithm automatically accounts for interactions between predictor
variables, the post modeling process used to generate CNQI and CASI does not fully account for interactions.
The post modeling outputs were derived from the relative influence and function plot outputs from BRT.
Those outputs themselves are objective approximations useful for model interpretation and interrogation;
however, they are not used in estimating the predicted values in BRT. Therefore, the individual function plots
from which CASI and CNQI and their metrics were derived did not account for variable interactions because
they are not accounted for in the BRT relative influence values or function plots. For example, while
appropriately accounting for an interaction between ecoregion and stream size would require separate
function plots for the effect of drainage area in each separate ecoregion, the function plot generated by BRT
represents an average effect of drainage area across all ecoregions. In that example, the effect of drainage
area is overestimated in some ecoregions and underestimated in others. This is not a limitation specific to the
methodology used in this assessment, but common in other popular predictive modeling approaches. The
advantage of the approach using BRT, however, is in the improved ability to predict current conditions (i.e.,
probability of presence) relative to other methods.

While continuous response variables can be modeled, binomial response variables can generally be modeled
with greater precision in cases where the response data vary in collection method or date. Throughout this
assessment, we have generally found that binomial (i.e., presence-absence) response variable models have
performed better than continuous (i.e., abundance-based) variable models. In the future, basing diversity
metrics on the presence-absence of targeted species, rather than relative abundance, may improve their
precision.

There were also a few important issues that were beyond the scope of this project. Acid precipitation,
biological interactions, and local habitat variation are all important in structuring fish communities. These
variables were not directly used as predictor variables, although, when possible, surrogates were used to
approximate variation in the model resulting from these processes.

Acid precipitation, for example, is prevalent throughout the Ohio River basin, especially in high-elevation
headwater streams. Acid precipitation can cause declines in abundance, or shifts in fish communities. To
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attempt to account for acid precipitation, bedrock geology was used as a predictor variable. Bedrock geology
is linked to soil acid-buffering capacity, and therefore the amount of acid reaching the stream.

Local habitat measures such as water quality (pH, alkalinity, instream temperature), physical habitat
complexity, and substrate size are examples of local measures important to structuring fish communities.
These measures could not be directly quantified in this analysis given the scope and scale of the project.
However, since each catchment’s land cover and geology was included in the analysis, some aspects of water
quality were indirectly modeled. Likewise, habitat complexity and substrate size could be partially captured
by the combination of stream slope and bedrock and surficial geology. Nonetheless, exclusion of detailed
local measures likely accounts for some uncertainty in the model results. Thus, the results from this analysis
should be combined with local expert knowledge and additional field data to arrive at the most accurate
representation of habitat conditions.

In addition, inclusion of biological interactions in future models could improve the precision of the model and
the ability to quantify its influence on the response variables. Specifically, important biological interactions in
this system could include the negative interactions resulting from the introduction of non-native or other
stocked fishes, such as brown trout or Asian carp.

One other specific limitation that could potentially explain additional variability in ORB models is the lack of a
quality mining predictor variable. The only variable supplied, mines, is incomplete in nature. Surface mines
were seemingly captured to an extent with the NLCD grassland variable but underground mines were
apparently unmodeled as predictor variables. For a region where both surface and underground mining are
so prevalent and pervasive, their inclusion would likely increase model accuracy significantly, at least
throughout the coal mining regions.

Finally, another important consideration for managing aquatic habitat at this scale, which was not considered
directly in this analysis, is climate change. Potential impacts from climate change include altered thermal
regimes, stream flow regimes, and physical habitat. Particularly for coldwater fishes such as trout and sculpin,
future warming could result in increased population isolation due to confinement to headwater habitats or
more localized thermal refugia. Specifically, identifying catchments vulnerable to climate change and
important to species of interest in this system—for example, those on the fringe of meeting the upper
thermal criteria for a species—could represent an important and supplementary next step in the
identification of restoration and protection priorities for targeted aquatic populations.
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Appendix A: DATA DICTIONARY

Field
Comid
Grid_code
Grid_count
Prod_unit
Areasgkm
Huc8
Hucl2

Hucl2_name

Eco_code2

Eco_code3

Streamleve
Streamorde
Fromnode
Tonode
Hydroseq
Levelpathi
Pathlength
Terminalpa
Arbolatesu
Divergence
Startflag
Terminalfl
Dnlevel
Thinnercod
Uplevelpat
Uphydroseq
Upminhydro
Dnlevelpat
Dnminhydro

Description

catchment comid (unique identifier)

grid code identifier

Number of cells in catchment grid, 30m

NHDPlus production unit (subdivides the region)
area of catchment, sq km

8 digit Hydrologic Unit Code

12 digit Hydrologic Unit Code (NRCS WBD)

12 digit Hydrologic Unit Code Name (NRCS WBD)

Ecoregion code (majority), Level Il, catchment

Ecoregion code (majority), Level I, catchment

Stream level

Strahler stream order

From node number (top of flowline)
To node number (bottom of flowline)
Hydrologic sequence number

Hydrologic sequence number of most downstream flowline in level path
Distance to terminal flowline downstream along the mainpath (kilometers)

Hydrologic sequence number of terminal flowline

An estimate of miles of stream upstream of a flowline. Always 0. (square kilometers

0 — not part of a divergence

1 — main path of a divergence

2 — minor path of a divergence

0 - not a headwater flowline

1 - a headwater flowline

0 - not a terminal flowline

1 —a terminal flowline

Streamlevel of mainstem downstream flowline

Ordinal value used to display various network densities
Upstream mainstem level path identifier

Source
NHDPlus
NHDPlus
NHDPlus
NHDPIlus
NHDPlus
Midwest FHAP
Midwest FHAP
Midwest FHAP

USEPA Omernik Ecoregions for North

America, Level Il

USEPA Omernik Ecoregions for North

America, Level Il

NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf
NHDFlowlineVAA.dbf

Data last
modified

4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011

4/11/2011

4/11/2011

4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
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Dndraincou
Cumdrainag
Maflowu
Maflowv
Mavelu
Mavelv
Incrflowu
Maxelevraw
Minelevraw
Maxelevsmo
Minelevsmo
Slope

Precip
Temp
Mississ
Warnings
Whbareacomi
Ftype

Fcode
Whftype
Whbfcode
Areaftype
Areafcode
Catchtyype
Nlcd0611a
Nlcd0611p
Nlcd0621a
Nlcd0621p
Nlcd0622a
Nlcd0622p
Nlcd0623a
Nlcd0623p
Nlcd0624a
Nlcd0624p
Nlcd0631a

Upstream mainstem hydrologic sequence number

Cumulative drainage area in square kilometers

Mean Annual Flow (cfs) at bottom of flowline as computed by Unit Runoff Method
Mean Annual Flow (cfs) at bottom of flowline as computed by Vogel Method
Mean Annual Velocity (fps) at bottom of flowline as computed by Unit Runoff Method
Mean Annual Velocity (fps) at bottom of flowline as computed by Vogel Method
Incremental Flow (cfs) for Flowline as computed by the Unit Runoff Method
Maximum elevation (unsmoothed) in meters

Minimum elevation (unsmoothed) in meters

Maximum elevation (smoothed) in meters

Minimum elevation (smoothed) in meters

Slope of flowline (cm/cm)

Mean annual precipitation in mm

Mean annual temperature in degrees centigrade * 10

Is catchment found along Mississippi River mainstem (1=yes, 0=no)
warnings on catchment anomalies

NHD waterbody/area feature COMID

NHD flowline feature type

NHD flowline feature code

NHD waterbody feature type

NHD waterbody feature code

NHD area feature type

NHD area feature code

Catchment flowline feature type (flowline and waterbody/area combined)
NLCD 2006 open water, area (sq km), catchment

NLCD 2006 open water, area (%), catchment

NLCD 2006 developed, open space, area (sq km), catchment

NLCD 2006 developed, open space, area (%), catchment

NLCD 2006 developed, low intensity, area (sq km), catchment

NLCD 2006 developed, low intensity, area (%), catchment

NLCD 2006 developed, medium intensity, area (sq km), catchment

NLCD 2006 developed, medium intensity, area (%), catchment

NLCD 2006 developed, high intensity, area (sq km), catchment

NLCD 2006 developed, high intensity, area (%), catchment

NLCD 2006 barren land (rock/sand/clay), area (sq km), catchment

NHDFlowlineVAA.dbf

catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf
catchmentattributesflow.dbf

catchmentattributestempprecip.dbf
catchmentattributestempprecip.dbf

Jackie

based on NHDPIus attributes
NHD flowline attributes
NHD flowline attributes
NHD flowline attributes
NHD waterbody attributes
NHD waterbody attributes
NHD area attributes

NHD area attributes
based on NHD

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
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Nlcd0631p
Nlcd0641a
Nlcd0641p
Nlcd0642a
Nlcd0642p
Nlcd0643a
Nlcd0643p
Nlcd0652a
Nlcd0652p
Nlcd0671a
Nlcd0671p
Nlcd0681a
Nlcd0681p
Nlcd0682a
Nlcd0682p
Nlcd0690a
Nlcd0690p
Nlcd0695a
NIcd0695p
Nlcd0611ac
Nlcd0611pc
Nlcd0621ac
Nlcd0621pc
Nlcd0622ac
Nlcd0622pc
Nlcd0623ac
Nlcd0623pc
Nlcd0624ac
Nlcd0624pc
Nlcd0631ac
Nlcd0631pc
Nlcd0641ac
Nlcd0641pc
Nlcd0642ac
Nlcd0642pc

NLCD 2006 barren land (rock/sand/clay), area (%), catchment

NLCD 2006 deciduous forest, area (sq km), catchment

NLCD 2006 deciduous forest, area (%), catchment

NLCD 2006 evergreen forest, area (sq km), catchment

NLCD 2006 evergreen forest, area (%), catchment

NLCD 2006 mixed forest, area (sq km), catchment

NLCD 2006 mixed forest, area (%), catchment

NLCD 2006 shrub/scrub, area (sq km), catchment

NLCD 2006 shrub/scrub, area (%), catchment

NLCD 2006 grassland/herbaceous, area (sq km), catchment

NLCD 2006 grassland/herbaceous, area (%), catchment

NLCD 2006 pasture/hay, area (sq km), catchment

NLCD 2006 pasture/hay, area (%), catchment

NLCD 2006 cultivated crops, area (sq km), catchment

NLCD 2006 cultivated crops, area (%), catchment

NLCD 2006 woody wetlands, area (sq km), catchment

NLCD 2006 woody wetlands, area (%), catchment

NLCD 2006 emergent herbaceous wetlands, area (sq km), catchment
NLCD 2006 emergent herbaceous wetlands, area (%), catchment

NLCD 2006 open water, area (sq km), upstream cumulative

NLCD 2006 open water, area (%), upstream cumulative

NLCD 2006 developed, open space, area (sq km), upstream cumulative
NLCD 2006 developed, open space, area (%), upstream cumulative

NLCD 2006 developed, low intensity, area (sq km), upstream cumulative
NLCD 2006 developed, low intensity, area (%), upstream cumulative
NLCD 2006 developed, medium intensity, area (sq km), upstream cumulative
NLCD 2006 developed, medium intensity, area (%), upstream cumulative
NLCD 2006 developed, high intensity, area (sq km), upstream cumulative
NLCD 2006 developed, high intensity, area (%), upstream cumulative
NLCD 2006 barren land (rock/sand/clay), area (sq km), upstream cumulative
NLCD 2006 barren land (rock/sand/clay), area (%), upstream cumulative
NLCD 2006 deciduous forest, area (sq km), upstream cumulative

NLCD 2006 deciduous forest, area (%), upstream cumulative

NLCD 2006 evergreen forest, area (sq km), upstream cumulative

NLCD 2006 evergreen forest, area (%), upstream cumulative

NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
NLCD 2006
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Nlcd0643ac
Nlcd0643pc
Nlcd0652ac
Nlcd0652pc
Nlcd0671ac
Nlcd0671pc
Nlcd0681ac
Nlcd0681pc
Nlcd0682ac
Nlcd0682pc
Nlcd0690ac
NIcd0690pc
Nlcd0695ac
Nlcd0695pc
NlcdO6deva
NlcdO6devp
NlcdO6fora
NlcdO6forp
NlcdO6agac
NlcdO6agpc
NlcdO6weta
NlcdO6wetp
NlcdO6devac
NlcdO6devpc
NlcdO6forac
NlcdO6forpc
NlcdO6agac
NlcdO6agpc
NlcdO6wetac
NlcdO6wetpc
Impervs
Impervsc
Nlcd1la
Nlcd11p
Nlcd12a

NLCD 2006 mixed forest, area (sq km), upstream cumulative

NLCD 2006 mixed forest, area (%), upstream cumulative

NLCD 2006 shrub/scrub, area (sq km), upstream cumulative

NLCD 2006 shrub/scrub, area (%), upstream cumulative

NLCD 2006 grassland/herbaceous, area (sq km), upstream cumulative

NLCD 2006 grassland/herbaceous, area (%), upstream cumulative

NLCD 2006 pasture/hay, area (sq km), upstream cumulative

NLCD 2006 pasture/hay, area (%), upstream cumulative

NLCD 2006 cultivated crops, area (sq km), upstream cumulative

NLCD 2006 cultivated crops, area (%), upstream cumulative

NLCD 2006 woody wetlands, area (sq km), upstream cumulative

NLCD 2006 woody wetlands, area (%), upstream cumulative

NLCD 2006 emergent herbaceous wetlands, area (sq km), upstream cumulative

NLCD 2006 emergent herbaceous wetlands, area (%), upstream cumulative

NLCD 2006 Developed land cover classes (21, 22, 23, 24), area (sq km), catchment
NLCD 2006 Developed land cover classes (21, 22, 23, 24), area (%), catchment

NLCD 2006 Forested land cover classes (41, 42, 43), area (sq km), catchment

NLCD 2006 Forested land cover classes (41, 42, 43), area (%), catchment

NLCD 2006 Agriculture land cover classes (81, 82), area (sq km), catchment

NLCD 2006 Agriculture land cover classes (81, 82), area (%), catchment

NLCD 2006 Wetland land cover classes (90, 95), area (sq km), catchment

NLCD 2006 Wetland land cover classes (90, 95), area (%), catchment

NLCD 2006 Developed land cover classes (21, 22, 23, 24), area (sq km), upstream cumulative
NLCD 2006 Developed land cover classes (21, 22, 23, 24), area (%), upstream cumulative
NLCD 2006 Forested land cover classes (41, 42, 43), area (sq km), upstream cumulative
NLCD 2006 Forested land cover classes (41, 42, 43), area (%), upstream cumulative
NLCD 2006 Agriculture land cover classes (81, 82), area (sq km), upstream cumulative
NLCD 2006 Agriculture land cover classes (81, 82), area (%), upstream cumulative
NLCD 2006 Wetland land cover classes (90, 95), area (sq km), upstream cumulative
NLCD 2006 Wetland land cover classes (90, 95), area (%), upstream cumulative
Impervious surface area (allocation per segment): area (km2)

Impervious surface area (accumulation of upstream segments): total upstream area (km2)
Open Water/allocation per segment: area in square kilometers

Open Water/allocation per segment: area-weighted percent

Perennial Ice/Snow/allocation per segment: area in square kilometers

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2006

NLCD 2001 Impervious Surface Area
NLCD 2001 Impervious Surface Area
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
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4/11/2011
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4/11/2011
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Nlcd12p
Nlcd21a
Nlcd21p
Nlcd22a
Nlcd22p
Nlcd23a
Nlcd23p
Nlcd24a
Nlcd24p
Nlcd31a
Nlcd31p
Nlcd32a
Nlcd32p
Nlcd41a
Nlcd41p
Nlcd42a
Nlcd42p
Nlcd43a
Nlcd43p
Nlcd51a
Nlcd51p
Nlcd52a
Nlcd52p
Nlcd71a
Nlcd71p
Nlcd72a
Nlcd72p
Nlcd73a
Nlcd73p
Nlcd74a
Nlcd74p
Nlcd81a
Nlcd81p
Nlcd82a
Nlcd82p

Perennial Ice/Snow/allocation per segment: area-weighted percent
Developed, Open Space/allocation per segment: area in square kilometers
Developed, Open Space/allocation per segment: area-weighted percent

Developed, Low Intensity/allocation per segment: area in square kilometers

Developed, Low Intensity/allocation per segment: area-weighted percent

Developed, Medium Intensity/allocation per segment: area in square kilometers
Developed, Medium Intensity/allocation per segment: area-weighted percent
Developed, High Intensity/allocation per segment: area in square kilometers

Developed, High Intensity/allocation per segment: area-weighted percent

Barren Land (Rock/Sand/Clay)/allocation per segment: area in square kilometers
Barren Land (Rock/Sand/Clay)/allocation per segment: area-weighted percent

Unconsolidated Shore/allocation per segment: area in square kilometers
Unconsolidated Shore/allocation per segment: area-weighted percent
Deciduous Forest/allocation per segment: area in square kilometers
Deciduous Forest/allocation per segment: area-weighted percent
Evergreen Forest/allocation per segment: area in square kilometers
Evergreen Forest/allocation per segment: area-weighted percent
Mixed Forest/allocation per segment: area in square kilometers

Mixed Forest/allocation per segment: area-weighted percent

Dwarf Scrub/allocation per segment: area in square kilometers

Dwarf Scrub/allocation per segment: area-weighted percent
Shrub/Scrub/allocation per segment: area in square kilometers
Shrub/Scrub/allocation per segment: area-weighted percent
Grassland/Herbaceous/allocation per segment: area in square kilometers
Grassland/Herbaceous/allocation per segment: area-weighted percent
Sedge/Herbaceous/allocation per segment: area in square kilometers
Sedge/Herbaceous/allocation per segment: area-weighted percent
Lichens/allocation per segment: area in square kilometers
Lichens/allocation per segment: area-weighted percent
Moss/allocation per segment: area in square kilometers
Moss/allocation per segment: area-weighted percent
Pasture/Hay/allocation per segment: area in square kilometers
Pasture/Hay/allocation per segment: area-weighted percent
Cultivated Crops/allocation per segment: area in square kilometers
Cultivated Crops/allocation per segment: area-weighted percent

2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
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Nlcd90a
Nlcd90p
Nlcd91a
Nlcd91p
Nlcd92a
Nlcd92p
Nlcd93a
Nlcd93p
Nlcd94a
Nlcd94p
Nlcd95a
Nlcd95p
Nlcd96a
Nlcd96p
Nlcd97a
Nlcd97p
Nlcd98a
Nlcd98p
Nlcd99a
Nlcd99p
Nlcd1lac
Nlcd11pc
Nlcd12ac
Nlcd12pc
Nlcd21ac
Nlcd21pc
Nlcd22ac
Nlcd22pc
Nlcd23ac
Nlcd23pc
Nlcd24ac
Nlcd24pc
Nlcd31ac
Nlcd31pc
Nlcd32ac

Woody Wetlands/allocation per segment: area in square kilometers

Woody Wetlands/allocation per segment: area-weighted percent

Palustrine Forested Wetland/allocation per segment: area in square kilometers
Palustrine Forested Wetland/allocation per segment: area-weighted percent
Palustrine Scrub/Shrub Wetland/allocation per segment: area in square kilometers
Palustrine Scrub/Shrub Wetland/allocation per segment: area-weighted percent
Estuarine Forested Wetland/allocation per segment: area in square kilometers
Estuarine Forested Wetland/allocation per segment: area-weighted percent
Estuarine Scrub/Shrub Wetland/allocation per segment: area in square kilometers
Estuarine Scrub/Shrub Wetland/allocation per segment: area-weighted percent
Emergent Herbaceous Wetlands/allocation per segment: area in square kilometers
Emergent Herbaceous Wetlands/allocation per segment: area-weighted percent

Palustrine Emergent Wetland (Persistent)/allocation per segment: area in square kilometers
Palustrine Emergent Wetland (Persistent)/allocation per segment: area-weighted percent

Estuarine Emergent Wetland/allocation per segment: area in square kilometers
Estuarine Emergent Wetland/allocation per segment: area-weighted percent
Palustrine Aquatic Bed/allocation per segment: area in square kilometers
Palustrine Aquatic Bed/allocation per segment: area-weighted percent
Estuarine Aquatic Bed/allocation per segment: area in square kilometers
Estuarine Aquatic Bed/allocation per segment: area-weighted percent

Open Water/upstream accumulation: area in square kilometers

Open Water/upstream accumulation: area-weighted percent

Perennial Ice/Snow/upstream accumulation: area in square kilometers
Perennial Ice/Snow/upstream accumulation: area-weighted percent
Developed, Open Space/upstream accumulation: area in square kilometers
Developed, Open Space/upstream accumulation: area-weighted percent
Developed, Low Intensity/upstream accumulation: area in square kilometers
Developed, Low Intensity/upstream accumulation: area-weighted percent
Developed, Medium Intensity/upstream accumulation: area in square kilometers
Developed, Medium Intensity/upstream accumulation: area-weighted percent
Developed, High Intensity/upstream accumulation: area in square kilometers
Developed, High Intensity/upstream accumulation: area-weighted percent
Barren Land (Rock/Sand/Clay)/upstream accumulation: area in square kilometers
Barren Land (Rock/Sand/Clay)/upstream accumulation: area-weighted percent
Unconsolidated Shore/upstream accumulation: area in square kilometers

2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Allocation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
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Nlcd32pc
Nlcd41ac
Nlcd41pc
Nlcd42ac
Nlcd42pc
Nlcd43ac
Nlcd43pc
Nlcd51ac
Nlcd51pc
Nlcd52ac
Nlcd52pc
Nlcd71ac
Nlcd71pc
Nlcd72ac
Nlcd72pc
Nlcd73ac
Nlcd73pc
Nlcd74ac
Nlcd74pc
Nlcd81ac
Nlcd81pc
Nlcd82ac
Nlcd82pc
Nlcd90ac
Nlcd90pc
Nlcd91ac
Nlcd91pc
Nlcd92ac
Nlcd92pc
Nlcd93ac
Nlcd93pc
Nlcd94ac
Nlcd94pc
Nlcd95ac
Nlcd95pc

Unconsolidated Shore/upstream accumulation: area-weighted percent
Deciduous Forest/upstream accumulation: area in square kilometers

Deciduous Forest/upstream accumulation: area-weighted percent

Evergreen Forest/upstream accumulation: area in square kilometers

Evergreen Forest/upstream accumulation: area-weighted percent

Mixed Forest/upstream accumulation: area in square kilometers

Mixed Forest/upstream accumulation: area-weighted percent

Dwarf Scrub/upstream accumulation: area in square kilometers

Dwarf Scrub/upstream accumulation: area-weighted percent
Shrub/Scrub/upstream accumulation: area in square kilometers
Shrub/Scrub/upstream accumulation: area-weighted percent
Grassland/Herbaceous/upstream accumulation: area in square kilometers
Grassland/Herbaceous/upstream accumulation: area-weighted percent
Sedge/Herbaceous/upstream accumulation: area in square kilometers
Sedge/Herbaceous/upstream accumulation: area-weighted percent
Lichens/upstream accumulation: area in square kilometers

Lichens/upstream accumulation: area-weighted percent

Moss/upstream accumulation: area in square kilometers

Moss/upstream accumulation: area-weighted percent

Pasture/Hay/upstream accumulation: area in square kilometers
Pasture/Hay/upstream accumulation: area-weighted percent

Cultivated Crops/upstream accumulation: area in square kilometers

Cultivated Crops/upstream accumulation: area-weighted percent

Woody Wetlands/upstream accumulation: area in square kilometers

Woody Wetlands/upstream accumulation: area-weighted percent

Palustrine Forested Wetland/upstream accumulation: area in square kilometers
Palustrine Forested Wetland/upstream accumulation: area-weighted percent
Palustrine Scrub/Shrub Wetland/upstream accumulation: area in square kilometers
Palustrine Scrub/Shrub Wetland/upstream accumulation: area-weighted percent
Estuarine Forested Wetland/upstream accumulation: area in square kilometers
Estuarine Forested Wetland/upstream accumulation: area-weighted percent
Estuarine Scrub/Shrub Wetland/upstream accumulation: area in square kilometers
Estuarine Scrub/Shrub Wetland/upstream accumulation: area-weighted percent
Emergent Herbaceous Wetlands/upstream accumulation: area in square kilometers
Emergent Herbaceous Wetlands/upstream accumulation: area-weighted percent

2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables
2001 NLCD Accumulation tables

4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011
4/11/2011

203 |Page



Nlcd96ac
Nlcd96pc
Nlcd97ac
Nlcd97pc
Nlcd98ac
Nlcd98pc
Nlcd99ac
Nlcd99pc
ImpO6avg
Imp06avgc
SoilOa
SoilOp
Soilla
Soillp
Soil2a
Soil2p
Soil3a
Soil3p
Soil4a
Soil4p
Soil0ac
SoilOpc
Soillac
Soillpc
Soil2ac
Soil2pc
Soil3ac
Soil3pc
Soil4ac
Soil4pc
Bedrla
Bedrlp
Bedr2a
Bedr2p
Bedr3a

Palustrine Emergent Wetland (Persistent)/upstream accumulation: area in square kilometers
Palustrine Emergent Wetland (Persistent)/upstream accumulation: area-weighted percent
Estuarine Emergent Wetland/upstream accumulation: area in square kilometers
Estuarine Emergent Wetland/upstream accumulation: area-weighted percent

Palustrine Aquatic Bed/upstream accumulation: area in square kilometers

Palustrine Aquatic Bed/upstream accumulation: area-weighted percent

Estuarine Aquatic Bed/upstream accumulation: area in square kilometers

Estuarine Aquatic Bed/upstream accumulation: area-weighted percent

NLCD 2006 percent impervious, average, catchment

NLCD 2006 percent impervious, average, upstream cumulative

Revised soil hydrologic group code O (urban areas/water), area (sq km), catchment
Revised soil hydrologic group code 0 (urban areas/water), area (%), catchment

Revised soil hydrologic group code 1 (A), area (sq km), catchment

Revised soil hydrologic group code 1 (A), area (%), catchment

Revised soil hydrologic group code 2 (B), area (sq km), catchment

Revised soil hydrologic group code 2 (B), area (%), catchment

Revised soil hydrologic group code 3 (C), area (sq km), catchment

Revised soil hydrologic group code 3 (C), area (%), catchment

Revised soil hydrologic group code 4 (D), area (sq km), catchment

Revised soil hydrologic group code 4 (D), area (%), catchment

Revised soil hydrologic group code O (urban areas/water), area (sq km), upstream cumulative
Revised soil hydrologic group code O (urban areas/water), area (%), upstream cumulative
Revised soil hydrologic group code 1 (A), area (sq km), upstream cumulative

Revised soil hydrologic group code 1 (A), area (%), upstream cumulative

Revised soil hydrologic group code 2 (B), area (sq km), upstream cumulative

Revised soil hydrologic group code 2 (B), area (%), upstream cumulative

Revised soil hydrologic group code 3 (C), area (sq km), upstream cumulative

Revised soil hydrologic group code 3 (C), area (%), upstream cumulative

Revised soil hydrologic group code 4 (D), area (sq km), upstream cumulative

Revised soil hydrologic group code 4 (D), area (%), upstream cumulative

Bedrock geology, group code 1 (Carbonate), area (sq km), catchment

Bedrock geology, group code 1 (Carbonate), area (%), catchment

Bedrock geology, group code 2 (felsic-igneous), area (sq km), catchment

Bedrock geology, group code 2 (felsic-igneous), area (%), catchment

Bedrock geology, group code 3 (mafic-igneous), area (sq km), catchment

2001 NLCD Accumulation tables

2001 NLCD Accumulation tables

2001 NLCD Accumulation tables

2001 NLCD Accumulation tables

2001 NLCD Accumulation tables

2001 NLCD Accumulation tables

2001 NLCD Accumulation tables

2001 NLCD Accumulation tables

NLCD 2006

NLCD 2006

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

STATSGO

USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
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Bedr3p
Bedrda
Bedrdp
Bedr5a
Bedr5p
Bedr6a
Bedr6p
Bedr7a
Bedr7p
Bedr8a
Bedr8p
Bedrlac
Bedrlpc
Bedr2ac
Bedr2pc
Bedr3ac
Bedr3pc
Bedr4ac
Bedrdpc
Bedr5ac
Bedr5pc
Bedrbac
Bedr6pc
Bedr7ac
Bedr7pc
Bedr8ac
Bedr8pc
Ethanol
Wetlanda
Wetlandp
Imp303
BFImean
rechgMean
N_kg
P_kg

Bedrock geology, group code 3 (mafic-igneous), area (%), catchment

Bedrock geology, group code 4 (metamorphic), area (sq km), catchment

Bedrock geology, group code 4 (metamorphic), area (%), catchment

Bedrock geology, group code 5 (sand and gravel), area (sq km), catchment
Bedrock geology, group code 5 (sand and gravel), area (%), catchment

Bedrock geology, group code 6 (sandstone), area (sq km), catchment

Bedrock geology, group code 6 (sandstone), area (%), catchment

Bedrock geology, group code 7 (shale), area (sq km), catchment

Bedrock geology, group code 7 (shale), area (%), catchment

Bedrock geology, group code 8 (water), area (sq km), catchment

Bedrock geology, group code 8 (water), area (%), catchment

Bedrock geology, group code 1 (Carbonate), area (sq km), upstream cumulative
Bedrock geology, group code 1 (Carbonate), area (%), upstream cumulative
Bedrock geology, group code 2 (felsic-igneous), area (sq km), upstream cumulative
Bedrock geology, group code 2 (felsic-igneous), area (%), upstream cumulative
Bedrock geology, group code 3 (mafic-igneous), area (sq km), upstream cumulative
Bedrock geology, group code 3 (mafic-igneous), area (%), upstream cumulative
Bedrock geology, group code 4 (metamorphic), area (sq km), upstream cumulative
Bedrock geology, group code 4 (metamorphic), area (%), upstream cumulative
Bedrock geology, group code 5 (sand and gravel), area (sq km), upstream cumulative
Bedrock geology, group code 5 (sand and gravel), area (%), upstream cumulative
Bedrock geology, group code 6 (sandstone), area (sq km), upstream cumulative
Bedrock geology, group code 6 (sandstone), area (%), upstream cumulative
Bedrock geology, group code 7 (shale), area (sq km), upstream cumulative
Bedrock geology, group code 7 (shale), area (%), upstream cumulative

Bedrock geology, group code 8 (water), area (sq km), upstream cumulative
Bedrock geology, group code 8 (water), area (%), upstream cumulative

Number of ethanol plants, catchment

wetland feature total area, sq km, catchment

wetland area, percent of catchment's area (o to 100%)

impaired stream (303d listed) present in catchment (0=no, 1=yes)

Base Flow Index, mean (catchment)

Recharge (estimated mean annual natural groundwater discharge, mm/yr), catchment mean
total estimated Nitrogen inputs, kg/year, catchment

total estimated Phosphorous inputs, kg/year, catchment

USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
USGS state geologic maps for Midwest
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USGS state geologic maps for Midwest
Renewable Fuels Association website
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EPA 303(D) listings by state

USGS

USGS Open File Report 03-311

USGS

USGS
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N_kgden
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AreaSgkmC
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ethanolC
wetlandAC
wetlandPC
imp303C
imp303PC
BFImeanC

rechgMeanC

N_kgC
P_kgC
N_kgdenC
P_kgdenC

Water_gw

Water_sw

Cattle
Popdens

Roadcr

Roadlen
Dams
Mines
Tri
Npdes
Cerc

Water_gwc

Water_swc

Cattlec
Popdensc

total estimated N inputs (kg/year), per sq km, catchment

total estimated P inputs (kg/year), per sq km, catchment

area of catchment's upstream contributing area, sq km

number of upstream catchments

number of ethanol plants, upstream contributing area

wetland area, sq km, upstream contributing area

wetland area, percent of upstream contributing area (0 to 100%)

number of upstream catchments within impairment (303D listings in catchment)
percent of upstream catchments within impairment (303D listings)

Base Flow Index, mean (upstream contributing area)

Recharge (estimated mean annual natural groundwater discharge, mm/year), mean value for all
upstream catchments

total estimated Nitrogen inputs, kg/year, upstream cumulative

total estimated Phosphorous inputs, kg/year, upstream cumulative
total estimated N inputs (kg/year), per sq km, upstream cumulative
total estimated P inputs (kg/year), per sq km, upstream cumulative

LOCAL: USGS National Atlas of the US: Ground Water consumption by COUNTY 2000: Millions gallons
per day/km2

LOCAL: USGS National Atlas of the US: Surface Water consumption by COUNTY 2000: Millions gallons
per day/km2

LOCAL: Agricultural Census 2002, 1:2M scale, INTEGER: average number of cattle/acre farmland
LOCAL: US Population Density 2000, NOAA, scale 1km, #/km2

LOCAL: Census 2000 TIGER Roads, 1:100K scale, road crossings identified by INTERSECT, with points
generated, #/km2

LOCAL: Census 2000 TIGER Roads, 1:100K scale, units not given - m/km2

LOCAL: National Inventory of Dams, 2002-2004, #/km2

LOCAL: USGS Active Mines and Mineral Processing Plants, 2003, #/km?2

LOCAL: USEPA, 2007: #/km2 Toxics Release Inventory Program sites

LOCAL: USEPA, 2007: #/km2 National Pollutant Discharge Elimination System permits
LOCAL: USEPA, 2007: #/km2 Compensation and Liability Information System permits

NETWORK: USGS National Atlas of the US: Ground Water consumption by COUNTY 2000: Millions
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NETWORK: USGS National Atlas of the US: Surface Water consumption by COUNTY 2000: Millions
gallons per day/km2
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Roadcrc

Roadlenc
Damsc
Minesc
Tric
Npdesc
Cercc

NETWORK: Census 2000 TIGER Roads, 1:100K scale, road crossings identified by INTERSECT, with points
generated, #/km2

NETWORK: Census 2000 TIGER Roads, 1:100K scale, units not given - m/km2

NETWORK: National Inventory of Dams, 2002-2004, #/km2

NETWORK: USGS Active Mines and Mineral Processing Plants, 2003, #/km2

NETWORK: USEPA, 2007: #/km2 Toxics Release Inventory Program sites

NETWORK: USEPA, 2007: #/km2 National Pollutant Discharge Elimination System permits
NETWORK: USEPA, 2007: #/km2 Compensation and Liability Information System permits
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Table 24: Intolerant fish species list

Scientific name

Ammocrypta clara
Ammocrypta pellucida
Ammocrypta vivax
Carpiodes velifer
Clinostomus elongatus
Clinostomus funduloides
Cottus bairdii
Crystallaria asprella
Cycleptus elongatus
Cyprinella analostana
Cyprinella camura
Cyprinella galactura
Erimystax dissimilis
Etheostoma baileyi
Etheostoma barbouri
Etheostoma barrenense
Etheostoma bellum
Etheostoma camurum
Etheostoma cinereum
Etheostoma flavum
Etheostoma histrio
Etheostoma maculatum
Etheostoma microlepidum
Etheostoma obeyense
Etheostoma parvipinne
Etheostoma percnurum
Etheostoma proeliare
Etheostoma pyrrhogaster
Etheostoma rafinesquei
Etheostoma rufilineatum
Etheostoma sagitta
Etheostoma sanguifluum
Etheostoma simoterum
Etheostoma smithi
Etheostoma stigmaeum
Etheostoma swaini
Etheostoma swannanoa
Etheostoma tippecanoe
Etheostoma variatum
Etheostoma virgatum
Etheostoma vitreum
Etheostoma zonale
Etheostoma zonistium
Exoglossum laurae
Exoglossum maxillingua
Fundulus catenatus

Common name

Western sand darter

Eastern sand darter
Scaly sand darter
Highfin carpsucker
Redside dace
Rosyside dace
Mottled sculpin
Crystal darter
Blue sucker
Satinfin shiner
Bluntface shiner
Whitetail shiner
Streamline chub
Emerald darter
Teardrop darter
Splendid darter
Orangefin darter
Bluebreast darter
Ashy darter
Saffron darter
Harlequin darter
Spotted darter
Smallscale darter
Barcheek darter
Goldstripe darter
Duskytail darter
Cypress darter
Firebelly darter
Kentucky darter
Redline darter
Arrow darter
Bloodfin darter
Snubnose darter
Slabrock darter
Speckled darter
Gulf darter
Swannanoa darter
Tippecanoe darter
Variegate darter
Striped darter
Glassy darter
Banded darter
Bandfin darter
Tonguetied minnow
Cutlip minnow
Northern studfish
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Fundulus dispar
Hiodon alosoides
Hiodon tergisus
Hybopsis amblops
Hybopsis amnis
Hypentelium etowanum
Hypentelium nigricans
Ichthyomyzon bdellium
Ichthyomyzon fossor
Ichthyomyzon gagei
Ichthyomyzon greeleyi
Lampetra appendix
Lepomis miniatus
Luxilus coccogenis
Lythrurus lirus
Macrhybopsis aestivalis
Macrhybopsis gelida
Macrhybopsis meeki
Moxostoma carinatum
Moxostoma duquesnei
Moxostoma lacerum
Moxostoma valenciennesi
Nocomis effusus
Nocomis leptocephalus
Notropis albizonatus
Notropis anogenus
Notropis ariommus
Notropis boops
Notropis chalybaeus
Notropis heterodon
Notropis heterolepis
Notropis leuciodus
Notropis photogenis
Notropis procne
Notropis rubellus
Notropis rubricroceus
Notropis sp1

Notropis telescopus
Notropis texanus
Notropis volucellus
Noturus elegans
Noturus eleutherus
Noturus exilis

Noturus flavus
Noturus hildebrandi
Noturus miurus
Noturus phaeus
Noturus stigmosus
Noturus trautmani

Starhead topminnow
Goldeye

Mooneye

Bigeye chub

Pallid shiner
Alabama hog sucker
Northern hog sucker
Ohio lamprey
Northern brook lamprey
Southern brook lamprey
Mountain brook lamprey
American brook lamprey
Redspotted sunfish
Warpaint shiner
Mountain shiner
Speckled chub
Sturgeon chub
Sicklefin chub

River redhorse

Black redhorse
Harelip sucker
Greater redhorse
Redtail chub
Bluehead chub
Palezone shiner
Pugnose shiner
Popeye shiner
Bigeye shiner
Ironcolor shiner
Blackchin shiner
Blacknose shiner
Tennessee shiner
Silver shiner
Swallowtail shiner
Rosyface shiner
Saffron shiner
Sawfin shiner
Telescope shiner
Weed shiner

Mimic shiner

Elegant madtom
Mountain madtom
Slender madtom
Stonecat

Least madtom
Brindled madtom
Brown madtom
Northern madtom
Scioto madtom
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Opsopoeodus emiliae
Percina burtoni

Percina copelandi
Percina evides

Percina macrocephala
Percina oxyrhynchus
Percina phoxocephala
Percina squamata
Percina stictogaster
Phenacobius uranops
Phoxinus cumberlandensis
Phoxinus erythrogaster
Phoxinus saylori
Phoxinus tennesseensis
Polyodon spathula
Thoburnia atripinnis

Pugnose minnow
Blotchside logperch
Channel darter

Gilt darter
Longhead darter
Sharpnose darter
Slenderhead darter
Olive darter
Frecklebelly darter
Stargazing minnow
Blackside dace

Southern redbelly dace

Laurel dace
Tennessee dace
Paddlefish
Blackfin sucker
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Table 25: Intolerant mussel species list

Scientific name

Actinonaias pectorosa
Alasmidonta heterodon
Alasmidonta triangulata

Alasmidonta atropurpurea

Alasmidonta varicosa
Anodontoides denigratus
Cumberlandia monodonta
Cyclonaias tuberculata
Cyprogenia stegaria
Elliptio crassidens
Epioblasma spp
Fusconaia cor

Fusconaia cuneolus
Fusconaia cordatum
Lampsilis abrupta
Lampsilis virescens
Lasmigona holstonia
Lemiox rimosus
Medionidus acutissimus
Medionidus conradicus
Obovaria retusa
Obovaria subrotunda
Pegias fabula
Plethobasus cicatricosus
Plethobasus cooperianus
Plethobasus cyphyus
Pleuronaia barnesiana
Pleuronaia dolabelloides
Potamilus capax
Ptychobranchus spp

Ptychobranchus fasciolaris
Quadrula cylindrica strigillata

Quadrula intermedia
Quadrula sparsa
Toxolasma pullus
Toxolasma lividus

Common name
Pheasantshell

Dwarf wedgemussel
Southern elktoe
Cumberland elktoe
Brook floater
Cumberland papershell
Spectaclecase

Purple wartyback
Fanshell

Elephant-ear

Shiny pigtoe

Finerayed pigtoe

Ohio pigtoe

Pink mucket

Alabama lampmussel
Tennessee heelsplitter
Birdwing pearlymussel
Alabama moccasinshell

Cumberland moccasinshell

Ring pink

Round hickorynut
Littlewing pearlymussel
White wartyback
Orangefoot pimpleback
Sheepnose

Tennessee pigtoe
Slabside pearlymussel
Fat pocketbook
Kidneyshell

Rough rabbitsfoot

Cumberland monkeyface
Appalachian monkeyface

Savannabh lilliput
Purple lilliput
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Appendix B: FUNCTIONAL RESPONSE PLOTS

Small stream signature fish index
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Modified index of centers of diversity
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Smallmouth Bass
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