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Abstract

The utility of microsatellite markers for inferring population size and trend has not been rig-

orously examined, even though these markers are commonly used to monitor the demogra-

phy of natural populations. We assessed the ability of a linkage disequilibrium estimator of

effective population size (Ne) and a simple capture-recapture estimator of abundance (N) to

quantify the size and trend of stable or declining populations (true N = 100–10,000), using

simulated Wright–Fisher populations. Neither method accurately or precisely estimated

abundance at sample sizes of S = 30 individuals, regardless of true N. However, if larger sam-

ples of S = 60 or 120 individuals were collected, these methods provided useful insights into

abundance and trends for populations of N = 100–500. At small population sizes (N = 100 or

250), precision of the Ne estimates was improved slightly more by a doubling of loci sampled

than by a doubling of individuals sampled. In general, monitoring Ne proved a more robust

means of identifying stable and declining populations than monitoring N over most of the

parameter space we explored, and performance of the Ne estimator is further enhanced if the

Ne ⁄ N ratio is low. However, at the largest population size (N = 10,000), N estimation outper-

formed Ne. Both methods generally required ‡ 5 generations to pass between sampling

events to correctly identify population trend.
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Introduction

Genetic markers have become increasingly popular as a

means to gain insights into the demography of wild pop-

ulations. For over a decade, it has been generally

acknowledged that genetic markers can provide insights

into recent demographic and genetic changes from

tissues obtained invasively or non-invasively from spe-

cies that are common, rare or cryptic (Schwartz et al.

1998, 2007; England & Luikart 1999; Lukacs & Burnham

2005b). Because genetic markers can provide adequate

data to model population abundance in situations where

conventional capture-recapture or other techniques do

not, there has been great enthusiasm surrounding their

use for assessing and monitoring abundance. Given the

popularity of genetic markers to obtain demographic

insights from a wide variety of different animal species

and populations, it is somewhat surprising that there has
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been no systematic examination of the performance of

genetic marker-based estimators of effective population

size (Ne) and abundance (N). As a consequence, it is

unclear under what conditions managers or scientists

might be able to detect demographic trends or what they

might do to increase their ability to obtain useful insights

into demography.

Genetic markers have been used successfully to obtain

insights into contemporary demography of wild animal

populations in a variety of ways (Bellemain et al. 2005;

Aspi et al. 2006; Goosens et al. 2006; Kendall et al. 2008;

Robinson et al. 2009), but nearly all methods require a set

of multilocus genotypes collected from a randomly sam-

pled set of individuals (Mills et al. 2000). However, the

differences in precision and power of genotypes for esti-

mating both Ne and N under a common sampling design

have not previously been evaluated using simulations

with known Ne and N. In general, researchers tend to col-

lect samples of genotypes to estimate either Ne or N,

depending upon their expertise or the basic biology of

their focal species.

Here, we focus on use of a sample of multilocus mi-

crosatellite genotypes to estimate Ne and N and gain

insights into contemporary population demography.

Related coalescent methods that can be used to provide

insights into long-term or historical evolutionary pro-

cesses are reviewed elsewhere (Kuhner 2008). Our focus

is on the relative performance of N̂e and N̂ estimators

under a consistent set of simulated biological and sam-

pling conditions used in typical population genetics stud-

ies. N̂e and N̂ are often used in a conservation context to

assess population status or extinction risk. If samples are

obtained from different cohorts or generations of a popu-

lation, these samples can be used in a variety of ways to

infer trends in Ne or N. Although one might wish to

obtain genetic data for reasons other than, or in addition

to, insights into abundance and trends in abundance

(Lukacs & Burnham 2005b), here we focus on how

limited genetic data and N̂e or N̂ might be used to infer

current N and population growth rate (k).

We examine the performance of two genetic methods

for detecting trends in population abundance under an

array of sampling conditions and simple population

dynamics. The first method uses genetic markers to iden-

tify (mark) individuals for a traditional Lincoln-Petersen

capture-recapture estimate of changes in N over time.

The second method uses genetic markers to detect

change in Ne based on the magnitude of gametic (link-

age) disequilibrium in the samples. We examine the abil-

ity of these methods to provide useful information about

N and k in a population of known, simulated demogra-

phy with Wright–Fisher (W-F) mating and discrete gen-

erations. In a stable population with W-F mating, Ne = N,

so our simulations provide useful conditions under

which to directly compare Ne and N estimators without

the confounding demographic complexity found in more

complicated mating schemes. Our examination includes

a variety of N and k values, as well as sampling efforts of

individuals (S) and loci (L) typical for population genetics

studies. From these varied demographic and sampling

conditions, we evaluate and discuss the performance of

the two methods to provide useful and reliable insights

into population abundance and trends in a W-F popula-

tion and identify conditions where one method is clearly

better than the other.

Materials and methods

We simulated the evolution of populations of known

abundance (N) and growth rate (k) using simulation

methods developed by Martien et al. (2009). A standard

initialization and equilibration phase was used for every

simulation (Fig. 1a). First, SimCoal (Laval & Excoffier

2004) was used to create multilocus allele frequencies for

100 replicate populations with historic Ne = 1000. For

each replicate, a close approximation of a W-F population

of size N was created with the R package Rmetasim

(Strand 2002). Initial genotypes for each individual in the

population were drawn from the multilocus allele fre-

quency distribution generated by SimCoal. Each popula-
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Fig. 1 The component phases (initializa-

tion, equilibration and simulation) of each

of the replicate simulations used in this

study (a), along with an example of the

corresponding behaviour of median N̂e

for a stable population (b).
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tion then went through a 10-generation equilibration

phase of W-F mating at size N = 100, 250, 500, 1000 or

10000, which allowed each population to come into

Hardy–Weinberg proportions and stable levels of

gametic disequilibrium (Fig. 1b), while retaining plausi-

ble levels of genetic variation. Three to four generations

are generally sufficient to reach asymptotic levels of

gametic disequilibrium after initialization (Waples 2006).

After 10 generations of equilibration, we simulated

different population dynamics and sampling conditions.

The simulated populations (N = 100, 250, 500, 1000,

10000) followed a deterministic growth rate (k = 0.9 or

1.0) for one generation, starting at generation t-1, and then

data collection began at generation t0 as the populations

followed the same k for 10 generations of the simulation

phase (Fig. 1a). This initiation of population growth at

generation t)1 allowed us to more directly compare the

Ne and N estimators, because single sample linkage dis-

equilibrium Ne estimates reflect the number of parents in

the generation preceding a sample (Waples 2005). In

declining populations (k = 0.9), Ne values will be biased

upwards by the larger Ne in previous generations, but the

impact should not be large relative to the effects of Ne in

the immediately preceding generation (Waples 2005). For

the stable populations (k = 1.0) we simulated, Ne @ N

each generation apart from demographic fluctuations

(Waples & Faulkner 2009). Mutation was included

throughout the Rmetasim simulations of the equilibration

and simulation phases at a rate of 2 · 10)3 ⁄ locus per gen-

eration, based upon a survey of published mutation rates.

During the simulation phase, samples of loci (L = 15

or 30) and individuals (S = 30, 60 or 120) were collected

at specified times (t = 0, 1, 5 or 10) and used to estimate

N̂e, N̂ and k̂. For N = 10,000, we used larger samples

(S = 240 or 480). From each sample, N̂e and N̂ were

obtained from individual genotypes using gametic

disequilibrium and Chapman-corrected LP estimators,

respectively. Estimates of N̂e depend on the theoretical

relationship between r2 (a measure of gametic disequilib-

rium) and Ne (Hill 1981). We used the program LDNe

(Waples & Do 2008), which implements the bias-correc-

tion method developed by (Waples 2006), to obtain N̂e

from each sample of S individuals. For LDNe, we used

the criterion Pcrit = 0.02 (alleles with frequency < 0.02 are

excluded), which generally provides a good balance

between precision and bias (Waples & Do 2009). Confi-

dence intervals (CIs) for N̂e are based upon the chi-

square approximation implemented by LDNe (Equation

12 in (Waples 2006)). To obtain N̂ and keep sampling

effort equal for the two methods, each sample was split

evenly between a set of initially captured individuals

(S ⁄ 2), which were genotyped and returned to the popula-

tion, followed immediately by a random sampling of a

second set of S ⁄ 2 individuals. This sampling approach

mimics that most likely to be used in a population genet-

ics study. The N̂ values and lognormal confidence CIs for

the LP estimator were calculated following Seber (1982),

and assume each individual is uniquely and accurately

identified from its genotype.

To first assess the performance of these estimators in

stable populations, we compared the bias and precision

of these two estimators at time t0 for each N. Next, we

examined how well N̂e or N̂ obtained at regular time

intervals can be used to detect change in a population

that is either declining or stable over a 1–10 generation

period. For each method, k was estimated as the slope of

a linear regression on the log transforms of the point esti-

mates of abundance at t0 and ti. We recorded the propor-

tion of times N̂e or N̂ estimates taken from sequentially

collected samples correctly identified k̂ <0:95 when true

k = 0.9, and k̂ >0:95 when true k = 1.0. In other words,

we posed the simple decision rule where a manager

might take action if a population was thought to be

declining at least 5% per generation (k = 0.95). For our

two growth scenarios, correct decisions would be: when

k = 0.9 the proportion identified as k < 0.95 and when

k = 1.0 the proportion identified as > 0.95. For simplicity,

we discuss only the case using 30 loci for the population

trend analysis.

In a population that conforms closely to a W-F popula-

tion, Ne @ N. However, this is rarely the case in real pop-

ulations. Recent surveys of natural populations have

reported median Ne ⁄ N ratios of 0.14 (Palstra & Ruzzante

2008) and 0.11 (Frankham 1995). Arguably, then, it is

more realistic to compare N̂e performance at a given N to

N̂ performance at a much larger N, because Ne is usually

much less than N in real populations. To achieve this

comparison, we compared the accuracy and precision of

N̂ when true N = 1000 with that of the Ne estimator when

true N (and Ne) was 100, 250 or 500. By using these values

for the Ne estimator, we bracketed the median values of

Ne ⁄ N found in the literature for natural populations and

provide insight into the most effective way to monitor a

population that has a Ne that is 10–50% of N.

Results

Population size during the equilibration phase affected

the initial level of genetic diversity to begin each simula-

tion phase. Following theoretical predictions, the primary

impact of population size is on the number of alleles per

locus, with less impact on initial heterozygosity (Table 1).

Mean number of alleles per locus at generation t0 varied

from 6.3 to 9.3, whereas heterozygosity varied only from

0.72 to 0.76, for N = 100 and N = 10000, respectively.

Genetic variation was lost in declining populations fol-

lowing theoretical expectations, with smaller populations

losing genetic variation more rapidly than larger ones.

� 2010 Blackwell Publishing Ltd
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However, in some simulations of large stable popula-

tions, genetic variation actually increased over time from

generation t0–t10 because mutation created new alleles

that were not lost via genetic drift.

Abundance

The ability of N̂e and N̂ to provide insight into abundance

varies considerably with the number of individuals

sampled (Fig. 2). Although the bias of both estimators

decreases with increasing numbers of individuals sam-

pled, N̂ tends to be consistently negatively biased,

whereas N̂e is consistently slightly upwardly biased. In

general, N̂ shows a larger absolute bias than N̂e under

most conditions. However, with moderate (S = 60) to

large (S = 120) sample sizes for a population genetics

study, both N̂e and N̂ are reasonably unbiased.

The precision of N̂e and N̂ in stable populations is also

informative and is a function of the true abundance and

number of individuals and loci sampled (Fig. 3). With

only 30 individuals sampled and genotyped at 15 loci,

both N̂e and N̂ have very large CIs, whether N = 100 or

1000. In several cases of small S and large N, the N̂e upper

CIs are indistinguishable from infinity. However, the CIs

decrease very rapidly with increased S for both estima-

tors across the range of abundances investigated. These

results are consistent with median point estimates shown

in Fig. 2. Interestingly, the relative precision of the two

estimators changes with the number of loci genotyped.

That is, at N = 100 or 250, the N̂ CIs are usually tighter

than the N̂e CIs at L = 15 for a given number of individu-

als, but this relationship is reversed if L = 30. This is a

consequence of our assumption that 15 loci are sufficient

for perfect identification of individuals in capture-recap-

ture. Therefore, increasing L does not affect precision of

N̂, whereas the width of N̂e CIs decreases rapidly as the

number of loci, and hence pairs of alleles used to estimate

linkage disequilibrium, increases. At N = 100 or 250, the

precision of N̂e improves slightly more with a doubling

of L than with a doubling of S. At N ‡ 500, it becomes dif-

ficult to obtain finite CIs for N̂e unless sampling effort is

relatively large (S = 120 and L = 30), but the N̂ CIs are

more reasonable. At such large N, the signal from genetic

drift is weak, so unless sampling effort is considerable (or

the ratio Ne ⁄ N is low; see below), the genetic estimates

are not very useful. Overall, the results suggest a sample

of S = 60 individuals genotyped at L = 15 loci would be a

useful sampling target to have reasonable expectations of

finite CIs for N = 100–250. With a sample of S = 120, rea-

sonably precise N̂ and N̂e can be obtained for abundances

up to N = 500. Interestingly, at the largest abundance

Table 1 Mean expected heterozygosity (He) and number of

alleles per locus (# Alleles) present in the initial (t0) and final (t10)

generation of 100 replicate simulations of different population

sizes (N) and growth rates (k). In all simulations, samples of

S = 30, 60 or 120 individuals were collected at t = 0, 1, 5 and 10

generations and genotyped at L = 15 or 30 loci

N

Initial

variation (t0)

Final variation (t10)

k = 1.0 k = 0.9

He # Alleles He # Alleles He # Alleles

100 0.72 6.3 0.69 5.7 0.66 4.8

250 0.74 7.2 0.73 7.0 0.72 6.3

500 0.75 7.7 0.74 7.6 0.74 7.1

1000 0.75 8.1 0.75 8.2 0.75 7.7

10000 0.76 9.3 0.76 9.5 0.76 9.0
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Fig. 2 Accuracy of N̂e and N̂ for a range of true abundances (N) and sampling efforts. Shown are the 5th, 20th, 50th, 80th and 95th

ranked values from 100 replicate simulations. Lower, medium and higher sample sizes were S = 30, 60 and 120, respectively, except for

N = 10000, for which S = 240 and 480 were lower and medium values, respectively. For N = 100, population size was insufficient to

samples of S = 120.
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N = 10000, a sample of S = 480 individuals was sufficient

to obtain reasonably accurate and precise N̂, but not N̂e.

Again, at such a large population size, there is little

genetic drift and so genetic methods are unlikely to work

well unless Ne << N.

Population trends

In the vast majority of cases, N̂e correctly identifies both

declining and stable populations more frequently than

does N̂ (Table 2). However, the performance of both

methods is greatly affected by population abundance

and sampling effort, as described earlier for abundance

inferences. Accurate identification of stable and declining

populations is also strongly influenced by the number of

generations that pass between samples. As more time

passes, the amount of signal from each population

increases and so does the proportion of simulations in

which population trend is correctly identified. At the

largest abundance (N = 10000), N̂ outperforms N̂e, but

can only detect population decline > 70% of the time if at

least five generations have passed and S = 480.

The influence of time and sampling effort, as well as

the relative performance of N̂e and N̂, can be seen

clearly from the distribution of k̂ in simulations for

which N = 250 at t0 (Fig. 4). The distributions of k̂ esti-

mated from N̂e (Panel A) or N̂ (Panel B) are flat, with

few defined peaks or evidence of a central tendency, if

samples are taken only a generation apart. In contrast,

if sampling effort is S ‡ 60 and t ‡ 5 generations have

passed between sampling events, the methods perform

fairly well and a well-defined peak emerges with the

centre of the k̂ distribution near true k. Under these bio-

logical and sampling conditions, at least 70% of both

the N̂e- and N̂-based k̂s correctly identify population

decline or stability (Table 2). In the best cases of large

sampling effort (S = 120) and maximal time between

sampling events (10 generations) at N = 250, over 90%

of the k̂s correctly identify population trend as either

stable or declining.

Although both methods show promise at inferring

population trends in simulations where true N £ 250,

particularly if samples are collected several generations

apart, they are much less effective at identifying popula-

tion trends where initial true N ‡ 500 (Table 2). With

only one generation between samples, the methods cor-

rectly identify population trends for N £ 500 < 60% of

the time, regardless of the number of individuals used in

this study. At N = 500, five generations must pass and

S = 60 or 120 individuals must be sampled to correctly

identify stable or declining population trends > 70% of

the time using LDNe N̂e. However, at the highest levels

of sampling effort (S = 120) and N = 500, both N̂e and N̂

correctly identify declining and stable populations 88%

of the time or better over 10 generations. At N = 1000,

only when sampling effort is high (S = 120) and 10

generations pass between samples does either method

correctly identify population trend > 70% of the time. At

this initial abundance, N̂-based k̂s are particularly poor

for all but the greatest sampling effort and time between

sampling events. N̂ performs worse than N̂e for nearly all

combinations of parameters when initial N = 500 or 1000.

In contrast, at N = 10000 and S = 240 or 480, the N̂ esti-

mator outperforms N̂e. However, N̂ correctly identifies

population trend in more than half of the replicates only

Fig. 3 Confidence intervals for the N̂e and N̂ estimators for 3

different values of N. For each N̂e point estimate, the vertical line

to the left assumes L = 15 loci and the line to the right assumes

L = 30 loci, both using the mean number of alleles observed in

the simulated data for that value of N (see Table 1). For N̂, the

sample size is the sum of the numbers of individuals collected in

the two time intervals, which are assumed to be equal. This illus-

tration assumes that the point estimate is equal to N (N̂e; filled

circles) or is as close to N as possible given the sample size (N̂;

open circles). Small numbers or symbols show exact values for

upper or lower bounds of confidence intervals that are beyond

the scale shown.
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when 5–10 generations have passed and S = 480 individ-

uals are sampled.

When Ne < N

More realistic situations with Ne < N can be evaluated by

comparing the accuracy and precision of N̂e at N = 100–

500 to that for N̂ at N = 1000, and this reveals several ben-

efits of estimating Ne instead of N. For example, with

medium sampling efforts, the N̂e estimates are far more

likely to be finite and are more tightly clustered around

the true value at N = 100, 250 or 500 than are the N̂ esti-

mates at N = 1000 (Fig. 2). It is also worthwhile to com-

pare the proportion of times the N̂e estimator correctly

identifies trend when the initial Ne value is 0.10 or 0.25

the initial N value. N̂ correctly identifies a stable popula-

tion of N = 1000 over 50% of the time only at the largest

sample size (S = 120; Table 2). By comparison, at N = 100

and S = 60 or N = 250 and S = 120, using N̂e provides a

�30% better chance of correctly identifying a stable pop-

ulation (Table 2).

Discussion

Some useful guidelines emerge from our simulations of

the use of multilocus genotypes to infer population

abundance and trends. Under certain sampling and bio-

logical conditions, N̂e and N̂ can provide useful insights

into demography. In general, N̂e estimated by LDNe

performed better than N̂ estimated by LP for trend

detection over most of the sampling and biological con-

ditions we simulated, even when we assumed Ne ⁄ N = 1.

However, there are some formidable limitations that

should be recognized if using N̂e or N̂ to infer popula-

tion status or trend. The primary limitation is that with

genotypes from only S = 30 individuals, N̂e and N̂ are

likely to be biased and imprecise, whether N = 100 or

1000. Our simulations indicate that to have a reasonable

chance of making useful inferences about abundance

from N̂e or N̂, 60 or more individuals should be sam-

pled. At small to moderate population sizes (N < 500),

N̂e is more precise and accurate than N̂ for making

inferences about population status under the conditions

we simulated. The slight positive bias and strong preci-

sion of N̂e at small abundances are consistent with simu-

lations by others (Waples & Do 2009). At larger

population sizes (N = 500–1000), N̂ is more precise than

N̂e under most of the conditions we simulated, assum-

ing N = Ne. At large N = 10000, N̂e is not very useful

unless Ne << N, because genetic drift and drift-induced

gametic disequilibrium are almost nonexistent. At this

population size, N̂ can be fairly precise and accurate if a

large sample (S = 480) can be obtained.

To successfully identify population trend in a popula-

tion of initial size N = 100–500, samples of 60 individuals

should be taken ‡ 5 generations apart. Samples taken 1

generation apart or samples of 30 individuals will rarely

provide accurate insights into population trend, which is

Table 2 Proportion of times population trend was correctly identified in declining or stable populations using the abundance (N̂) or

effective size methods (N̂e) under a range of initial abundances (N), time between sampling periods and number of individuals sampled

(S)

Declining population Stable population

Gens 0–1 Gens 0–5 Gens 0–10 Gens 0–1 Gens 0–5 Gens 0–10

N̂e N̂ N̂e N̂ N̂e N̂ N̂e N̂ N̂e N̂ N̂e N̂

N = 100 S = 30 57 47 75 61 95 77 55 56 73 55 86 73

S = 60 66 56 – – – – 62 63 89 81 97 97

N = 250 S = 30 55 14 61 25 78 35 50 26 53 28 60 38

S = 60 55 49 77 71 91 87 63 50 73 71 93 86

S = 120 62 61 90 85 – – 59 49 87 83 98 94

N = 500 S = 30 39 5 45 5 57 4 36 9 52 4 52 14

S = 60 46 25 65 44 89 57 50 45 66 41 82 57

S = 120 53 59 83 75 100 96 59 53 73 73 94 88

N = 1000 S = 30 21 0 26 1 35 1 24 2 25 0 34 4

S = 60 36 11 42 26 58 21 46 21 57 23 56 34

S = 120 49 42 67 65 90 74 51 45 63 56 78 76

N = 10 000 S = 240 30 20 25 41 33 41 29 34 27 45 32 39

S = 480 44 51 44 73 71 88 38 51 40 64 56 84

Cases where one or more estimates were infinite were categorized as incorrectly identified. For some combinations of parameters, there

were insufficient numbers of individuals to meet sampling size requirements (–).
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disappointing but not too surprising. In real populations,

it would be difficult to know whether a change in abun-

dance over one generation, even if estimated without

error, was because of natural fluctuations or something

more dramatic. Obviously, with more time between

samples and larger samples, our ability to accurately

identify stable or declining populations improves.

Increased time between samples increases the signal in

the data, and increased sampling effort increases the sig-

nal to noise ratio in the samples. A useful rule of thumb

might be to obtain samples of at least 60 individuals more

than a generation apart to monitor populations of 100–

500 individuals.

Practical considerations

Several important considerations should be addressed

when designing a real-world study around these simula-

tion results. First, although the rate of population decline

we modelled was moderately strong (k = 0.9), this is a

per generation decline. In real populations of long-lived

species, there may be a much smaller annual decline that

translates into an equivalent per generation decline. Sec-

ond, we used only moderately polymorphic microsatel-

lite loci in our simulations. It may be possible to increase

statistical power to infer abundance or population trend

by targeting loci with the greatest amount of diversity.

That is, using highly polymorphic loci will provide more

alleles to estimate linkage disequilibrium and to obtain

unique genotypes for abundance estimation. However,

this benefit of high polymorphism should be tempered

by considerations of genotyping errors that should be

addressed with laboratory (McKelvey & Schwartz 2004)

and modelling (Lukacs & Burnham 2005a) efforts.

Our simulations directly compared Ne and N estima-

tors under identical sampling conditions. However, there

are some important departures from these conditions in

real populations that should help researchers studying

real populations. For example, we have simulated a W-F-

like population in which Ne is close to N. In many natural

populations, Ne < N (Frankham 1995; Palstra & Ruzzante

2008). Therefore, Ne may provide much more precise and

useful estimates for making demographic inferences, as

our simulations showed. On one hand, Ne is not N, and

there may be reasons to track N directly because it may

be more directly related to short-term management

guidelines, considerations, triggers or thresholds. A per-

haps more important caveat is that changes in Ne could

reflect changes in the Ne ⁄ N ratio as a result of altered

mating system or age structure instead of (or in addition

to) changes in N (Palstra & Ruzzante 2008). On the other

hand, Ne provides useful insights into the potential for

loss of genetic diversity and evolutionary potential.

In populations with high fecundity and Type III survi-

vorship, it is frequently easy to obtain large samples of

particularly abundant stage classes, such as juveniles.

Large samples will increase the precision of Ne estimators

and may favour their use for monitoring natural popula-
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tions with such life histories. We will investigate this situ-

ation in a forthcoming article.

In addition, we used sample sizes typical of popula-

tion genetics studies (S = 30–120 individuals) in our sim-

ulations. This meant that, in many instances, a fairly

small proportion of the simulated population was sam-

pled, which translates into a low probability of detection

in capture-recapture parlance. If probabilities of detection

are low, capture-recapture estimators are imprecise and

model selection algorithms will be inaccurate (Menkins &

Anderson 1988; McKelvey & Pearson 2001). In contrast,

in situations where a higher probability of detection is

possible because of the characteristics of the species stud-

ied or the sampling design, more sophisticated capture-

recapture methods (Lukacs and Burnham 2005a, b;

Boulanger et al. 2006; Schofield & Barker 2008) than the

simple LP method used here can be applied, and more

precise and accurate estimates can be obtained. This high-

lights the importance of understanding the underlying

biology and sampling limitations of a target population.

Finally, our interest here was in comparing the rela-

tive performance of simple Ne and N estimates to make

inferences about population demography, so we com-

pared and contrasted LDNe and LP. However, these

methods and others (Schofield & Barker 2008; Tallmon

et al. 2008; Wang 2009; Waples & Do 2009) could be used

on the same data sets to obtain more information about

contemporary population demography. In addition, tem-

poral Ne estimators could be used in many instances

when three or more genetic samples are obtained across

cohorts or generations. Obviously, it would be wise to

use as much information as can be extracted from mul-

tilocus genotype data sets by combining insights from Ne

and N for any population, while also considering the

assumptions that come with each approach. Future

efforts that address how information on Ne and N can be

used together to maximize the inferences about popula-

tion status and trends would be especially helpful, per-

haps through the use of open population models (Lukacs

& Burnham 2005b) that incorporate recruitment and sur-

vival in N estimates combined with one sample and tem-

poral Ne estimators.
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