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Abstract
The Brook Trout Salvelinus fontinalis is an important species of conservation concern in the eastern USA. We

developed a model to predict Brook Trout population status within individual stream reaches throughout the
species’ native range in the eastern USA. We utilized hierarchical logistic regression with Bayesian estimation to
predict Brook Trout occurrence probability, and we allowed slopes and intercepts to vary among ecological
drainage units (EDUs). Model performance was similar for 7,327 training samples and 1,832 validation samples
based on the area under the receiver operating curve (»0.78) and Cohen’s kappa statistic (0.44). Predicted water
temperature had a strong negative effect on Brook Trout occurrence probability at the stream reach scale and was
also negatively associated with the EDU average probability of Brook Trout occurrence (i.e., EDU-specific
intercepts). The effect of soil permeability was positive but decreased as EDU mean soil permeability increased.
Brook Trout were less likely to occur in stream reaches surrounded by agricultural or developed land cover, and an
interaction suggested that agricultural land cover also resulted in an increased sensitivity to water temperature.
Our model provides a further understanding of how Brook Trout are shaped by habitat characteristics in the
region and yields maps of stream-reach-scale predictions, which together can be used to support ongoing
conservation and management efforts. These decision support tools can be used to identify the extent of potentially
suitable habitat, estimate historic habitat losses, and prioritize conservation efforts by selecting suitable stream
reaches for a given action. Future work could extend the model to account for additional landscape or habitat
characteristics, include biotic interactions, or estimate potential Brook Trout responses to climate and land use
changes.

The Brook Trout Salvelinus fontinalis is an economically,

socially, and ecologically important species of conservation

concern throughout its native range in the eastern United

States. Brook Trout have relatively narrow habitat require-

ments, but they were historically widespread in areas where

cold water, access to suitable spawning substrates, and

instream cover were available. Largely as a result of anthropo-

genic habitat changes, Brook Trout have been extirpated from

28% of subwatersheds in their native range within the eastern

USA and have been greatly reduced (>50% of populations

lost) in an additional 35% of subwatersheds (Hudy et al.

2008). A number of activities and stressors have negatively

affected Brook Trout, including historical deforestation and

contemporary land use changes (Hudy et al. 2008; Stranko

et al. 2008), acid deposition (Schofield 1976; Haines and John-

son 1982), population fragmentation (Letcher et al. 2007;

Whiteley et al. 2013), and the introduction of nonnative spe-

cies (Larson and Moore 1985; Wagner et al. 2013). Further

land cover changes related to urbanization, forestry, and rela-

tively new factors (e.g., natural gas exploration) are likely to
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result in continued losses of Brook Trout locally (Moglen

et al. 2003; Stranko et al. 2008; Steen et al. 2010; Weltman-

Fahs and Taylor 2013), while alterations in water temperature,

streamflow, and related habitat characteristics driven by cli-

mate change are expected to result in widespread losses

throughout much of the region (Meisner 1990; Clark et al.

2001; Flebbe et al. 2006).

In response to concerns about the future of Brook Trout in

the eastern United States, federal, state, and conservation

stakeholders formed the Eastern Brook Trout Joint Venture

(EBTJV) and provided a baseline assessment to summarize

existing knowledge on the status of Brook Trout populations

(Hudy et al. 2008). This assessment provided a regionwide

overview of Brook Trout population status in subwatersheds

and identified landscape attributes that were related to popula-

tion status, providing a valuable guide for transboundary man-

agement and conservation efforts. However, subwatershed

status from the assessment cannot be used to elucidate the

effects of stressors that act locally or to infer the status of indi-

vidual populations, as there are many unique stream reaches

within a subwatershed and each may represent a unique resi-

dent Brook Trout population (Castric et al. 2001; Kanno et al.

2011). Although an assessment of Brook Trout population sta-

tus within individual stream reaches would provide more valu-

able information, there are insufficient data and knowledge

throughout this large region (Hudy et al. 2008). In such cases,

a regional overview of potential population status in stream

reaches can be gained by predicting occurrence or abundance

using species distribution models (SDMs).

Species distribution models have been developed using a

wide range of methods to accurately predict distributions and

guide management decisions for diverse taxa (see Elith and

Leathwick 2009 for a review), including Brook Trout (Wenger

et al. 2011; Al-Chokhachy et al. 2013) and several other sal-

monid species (Isaak et al. 2010; Wenger et al. 2011; Ruesch

et al. 2012) throughout large regions in the western United

States. For example, models predicting the distribution of Bull

Trout Salvelinus confluentus and Cutthroat Trout Oncorhyn-

chus clarkii have been used to predict potential distributions

resulting from climate changes and nonnative species and

thus to help prioritize conservation actions (Peterson et al.

2013). Although there are many SDMs of varying complex-

ity and spatial extent for predicting Brook Trout occurrence

and abundance in the eastern United States (Meisner 1990;

Flebbe et al. 2006; McKenna and Johnson 2011; Wagner

et al. 2013, 2014), none of those SDMs was developed to

obtain predictions at the stream reach scale throughout the

entire EBTJV region.

Here, we describe the first effort to predict the status of

Brook Trout populations within individual stream reaches

throughout the species’ native range in the eastern United

States. We developed a Bayesian hierarchical logistic regres-

sion model to predict the probability of Brook Trout occur-

rence based on predicted water temperature and a set of

ecologically relevant landscape attributes. The estimated

effects of predicted water temperature and landscape attrib-

utes, occurrence predictions, and uncertainty estimates provide

useful information that can be used to help coordinate conser-

vation and management activities throughout the region at

multiple scales.

METHODS

Study region.—The study region included the native range

of Brook Trout in the eastern USA as defined by the EBTJV

and represents approximately 30% of the worldwide native

range of Brook Trout and 70% of its U.S. range (Figure 1;

Hudy et al. 2008). Because the EBTJV region was originally

defined based on subwatershed boundaries, we modified the

EBTJV region slightly to include all streams from the National

Hydrography Dataset Plus version 1.0 (NHDPlus; USEPA and

FIGURE 1. Study region, ecological drainage unit (EDU) boundaries, and

locations of stream sites used for model training and model validation. The

inset shows the location of the study region within the conterminous USA.
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USGS 2005) for which the local catchments were at least 90%

within the study region boundary. In total, there are 239,350

NHDPlus stream reaches in the region, but only 195,134 of

the stream reaches were topologically connected and had all

available predictor variables in the base map upon which our

model was based. The study region roughly corresponds to the

historic range of Brook Trout, which are limited to streams

with suitably cold water temperatures (Meisner 1990) that are

typically found at higher elevations (>200 m; Flebbe et al.

2006) in the southern portion of the region but are found at

nearly all elevations at higher latitudes. Brown Trout Salmo

trutta and Rainbow Trout O. mykiss have been introduced

widely and have established populations in various portions of

the region. The predominant land cover in the region is sec-

ond-growth forest, but several urban centers support a large

human population, agricultural land use is widespread in lower

elevations, and forest management is common throughout

much of the range.

Fish data.—We compiled fish sampling records from

throughout the region in the winter of 2013 through direct con-

tact with state agencies and by downloading data directly from

the Multistate Aquatic Resources Information System

(MARIS) website (www.marisdata.org/). We linked sampling

locations to the nearest NHDPlus stream segment within

150 m, removing those that were farther away from any

stream segment. Our ideal data set would have only included

samples collected via electrofishing that targeted all species,

but this was not entirely feasible since the compiled data sets

originated from a variety of sampling programs with various

objectives and sampling gear was not always reported. Thus,

when sampling gear was recorded, we included only samples

collected by electrofishing methods (i.e., backpack, barge, or

boat electrofishing); when sampling gear was not recorded, we

included all samples because agency communications sug-

gested that electrofishing was the primary gear used. We

removed any samples that targeted black basses Micropterus

spp., percids, or esocids because Brook Trout might not have

been recorded if captured.

For each sample, we recorded the occurrence of Brook

Trout and attributed all samples to the nearest NHDPlus

stream reach. We selected samples that were collected

between May and October from 1991 to 2011, which span the

year of satellite image collection for the 2001 National Land

Cover Dataset that we used to represent land cover in our anal-

ysis (see below). Sampling month was not available for data

from Tennessee, but we included all samples since stream sur-

veys are most often conducted in the summer months during

low-flow periods. When multiple samples were available for a

given NHDPlus stream reach, we selected the most recent

sample collected within the reach.

Water temperature and landform predictors.—Water tem-

perature is a key determinant of habitat suitability for Brook

Trout both globally (MacCrimmon and Campbell 1969) and

locally (e.g., Martin and Petty 2009), but there are insufficient

data available to use measured water temperature to character-

ize thermal habitat regionally. Although air temperature, ele-

vation, and latitude have been used as surrogates of water

temperature in previous efforts, water temperature represents a

more direct link to stream habitat, and predicted water temper-

atures have provided more accurate predictions than surrogate

variables for Brook Trout in the western USA (Al-Chokhachy

et al. 2013). For this reason, we used predicted water tempera-

tures from a neural network ensemble model that we devel-

oped to predict mean daily water temperatures throughout the

study region (DeWeber and Wagner 2014). We briefly

describe the model here, and we refer the reader to our previ-

ous paper (DeWeber and Wagner 2014) for further details.

The neural network ensemble model predicted water tempera-

ture for a total of 1,080 stream reaches throughout the region

with good accuracy based on root mean square error (RMSE

» 1.9�C) and low bias (percent bias < §2%). In order of

importance, predictors included current-day mean air tempera-

ture, prior 7-d mean air temperature, network area, network

forest cover, network mean aspect, network mean base flow

index, and riparian forest cover within the local catchment.

We modified the water temperature model slightly to help

ensure that the model would generalize well to the large num-

ber of stream reaches in the region. First, we removed network

mean base flow index because sensitivity analysis plots

showed irregular effects on water temperature that could bias

predictions for some stream reaches (see Figure 6 in DeWeber

and Wagner 2014). Model performance was not negatively

affected by the removal of this predictor (i.e., RMSE remained

unchanged). Second, we retrained the model using all avail-

able water temperature observations because the large amount

of data that were withheld for validation during the original

model development provided information that could inform

regional predictions. The modified model had similar perfor-

mance (RMSE D 2.0�C; percent bias D 0.02%) and predictor

effects nearly identical to those of the original model

(DeWeber and Wagner 2014). We utilized the modified model

to predict mean daily water temperatures that were representa-

tive of current conditions by using a 5-year average (centered

on 1997) of observed mean daily air temperature for each day

during May–October. We then calculated five water tempera-

ture metrics for describing the thermal suitability of river habi-

tat for Brook Trout: mean seasonal water temperature; mean

July water temperature; and maximum 7-, 14-, and 30-d mov-

ing averages. Because all five thermal metrics were highly cor-

related for the 1997 average conditions, hereafter we only

describe the models that were developed using the maximum

30-d moving average (Max30Temp).

A large suite of landscape attributes and human disturbance

metrics summarized within the local catchment (i.e., the local,

reach-level catchment containing the site) and network catch-

ment (i.e., all upstream reach-level catchments, including the

local catchment) of each stream reach was available to

describe fish habitat, as detailed by Esselman et al. (2011).
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From this suite, we selected three ecologically relevant land-

scape attributes that were relatively independent from each

other and from Max30Temp: mean soil permeability (mm/h),

agricultural land cover (%), and developed land cover (%).

Mean soil permeability was included as a metric of soil size,

and we expected higher permeability (i.e., coarser soils) to

represent more suitable habitat for Brook Trout given ecologi-

cal characteristics (Argent and Flebbe 1999; Sweka and Hart-

man 2001). Because the local and network measures of these

three landscape attributes were highly correlated (jrj > 0.70),

the measure that was most correlated with Brook Trout occur-

rence was selected for inclusion in the model (Table 1). We

did not include any landscape attributes that were previously

used to predict water temperature because any potential effects

on Brook Trout were at least partially accounted for by pre-

dicted water temperature, and their inclusion could confound

modeled relationships. We also did not consider elevation, lat-

itude, or other attributes that would primarily be surrogates of

climate or water temperature because their inclusion could

confound the effects of water temperature (Stanton et al.

2012).

Next, the NHDPlus stream reaches were assigned to eco-

logical drainage units (EDUs), and several EDU-level attrib-

utes (model covariates) were calculated, including the mean of

predicted seasonal (May–October) water temperature; mean

soil permeability; and percentages of forest, agricultural, and

urban land cover. We chose to stratify the study region by

using EDUs because they are watershed-based units that are

designed to have similar habitats and freshwater assemblages

due to common zoogeographic, physiographic, and climatic

characteristics (Higgins et al. 2005). We calculated EDU-level

covariates to account for any cross-scale interactions, which

occur if the effects of local Brook Trout occurrence predictors

vary spatially as a result of interactions with driving factors

that operate at a larger spatial scale (Soranno et al. 2014). The

EDU attributes were summarized from the reach-level predic-

tors; the exception was the land cover percentages, which

were calculated as the areal percent covered by each land

cover type in an EDU. For clarity, we refer to stream reach

attributes as “predictors” and EDU attributes as “covariates”

throughout this paper. Prior to model development, we stan-

dardized all predictors and covariates by subtracting the mean

and dividing by the SD from the population of all stream

reaches or EDUs in the region. We then randomly selected

20% of the observations from each EDU for model validation.

Model development.—We used hierarchical logistic regres-

sion models because they have been shown to generalize to

new locations (Wenger and Olden 2012), they account explic-

itly for hierarchical data structure, and they can accommodate

spatial autocorrelation that may exist in ecological data sets

(Wagner et al. 2006). The first level (reach level) of our model

predicted the probability of Brook Trout occurrence in individ-

ual stream reaches based on stream reach predictors (Table 1).

The general reach-level formula was

logit.pi/Daj Cb1jXij C bXijQij;

where pi is the probability of Brook Trout occurrence, aj is the

intercept, b1j is the estimated effect of reach-level predictor

Xij, and b is the estimated interaction between reach-level pre-

dictors Xij and Qij for the jth EDU and ith stream reach. With-

out covariates, the EDU-specific intercepts and slopes are

modeled at the EDU level as

aj

b1j

� �
»N

ma

mb1

� �
;

s2
a rsasb1

rsasb1
s2
b1

 ! !
;

where s2
a and s2

b1
are variance estimates and r is the correla-

tion between group-specific intercepts and slopes. We did not

account for imperfect detection in our model because adequate

data do not exist. Detection probability can vary in relation to

stream size, presence of nonnative species, sampling gear, and

water chemistry (Hense et al. 2010; Wagner et al. 2013), and

this variation could affect model inferences and predictions

(Royale and Dorazio 2009). Nevertheless, we are confident in

the accuracy of most recorded absences because detection

probability for Brook Trout was generally high across a

TABLE 1. Stream-reach-level and ecological drainage unit (EDU)-level attributes that were tested as candidate predictor variables in hierarchical logistic

regression models for predicting Brook Trout occurrence.

Attribute Level Units Source Spatial resolution Land cover code

Max30Temp (maximum 30-d

moving average temperature)

Reach �C Predicted water temperaturea Reach

Network soil permeability Reach mm/h Schwarz and Alexander 1995 1:250,000 NA

Local developed land Reach % cover Homer et al. 2004 30-m grid 21 C 22 C 23 C 24

Network agriculture Reach % cover Homer et al. 2004 30-m grid 81 C 82

Forest cover EDU % cover Homer et al. 2004 30-m grid 41 C 42 C 43

Mean water temperature EDU �C Predicted water temperaturea 30-m grid NA

Mean soil permeability EDU mm/h Schwarz and Alexander 1995 1:250,000 NA

aPredicted water temperature was based on a model described by DeWeber and Wagner (2014).
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variety of streams with similar sampling variation in Pennsyl-

vania (>0.90; Wagner et al. 2013).

The EDU level of the model allowed intercepts and slopes

to vary among EDUs to help account for potential variation in

the average probability of occurrence and the effects of reach-

level covariates on Brook Trout occurrence throughout the

region. We also modeled this among-EDU variation using the

aforementioned EDU-level covariates to determine whether

and how intercepts and slopes varied among EDUs as a func-

tion of landscape attributes. With covariates, the EDU level of

the model became

aj

b1j

� �
»N

ga0 C ga1Zj

g
b1

0 C g
b1

1 Zj

 !
;

s2
a rsasb1

rsasb1
s2
b1

 !
0
BBBB@

1
CCCCA;

where ga0 is the intercept and ga1 is the estimated slope for the

EDU-level covariate Zj; g
b1

0 is the intercept and g
b1

1 is the esti-

mated effect of EDU-level covariate Zj; and s2
a and s2

b1
are

conditional variance estimates. The model can be extended to

include p reach-level predictors and k EDU-level covariates

by adding bpj and g
bp

k parameters.

Although this hierarchical approach has several advantages,

model selection is not straightforward, largely because of the

difficulty in determining the effective number of parameters

estimated. As a result, information criteria (e.g., deviance

information criterion) cannot be used to effectively compare

models or determine weights for model averaging (Bolker

et al. 2009). For this reason, we used a sequential forward

selection approach to first select reach-level predictors and

then EDU-level covariates to include as described below

(Model Selection). All models were fitted in a Bayesian frame-

work in the program JAGS (Plummer 2011) using the R2Jags

package (Su and Yajima 2013) in the R statistical environment

(R Development Core Team 2014). Diffuse priors were used

for all parameters. For model selection, we kept every third

draw from three chains for a total of 30,000 draws from the

posterior distribution after discarding the first 10,000 iterations

from each chain. We examined trace plots and verified that the

scale reduction factor was close to 1.0 to ensure that the chains

converged. We included reach-level predictors and EDU-level

covariates in the final model if the 90% credible intervals did

not include 0.

Model selection.—We first selected reach-level predictors

to include in the model because our primary interest was to

predict Brook Trout occurrence in stream reaches throughout

the region. Before selecting predictors, we fitted preliminary

models with a single reach-level predictor, allowing effects to

vary among EDUs, to determine whether the inclusion of mul-

tiple reach-level predictors greatly changed parameter esti-

mates, which could signify problems resulting from

collinearity. Because all four reach-level predictors had impor-

tant effects on Brook Trout and because collinearity effects

were not evident, we included all four reach-level predictors

throughout model development. Lastly, we selected interac-

tions among reach-level predictors by sequentially adding

each two-way interaction to the model and retaining those that

differed from 0 (as determined by 90% credible intervals that

did not overlap 0). Two-way interactions between reach-level

predictors were not allowed to vary among EDUs. After

selecting reach-level predictors, we calculated the degree to

which intercepts and slopes varied among EDUs to determine

whether the variation was substantial and could potentially be

explained by EDU-level covariates. We considered variation

to be substantial whenever EDU-specific slopes and intercepts

differed from the grand mean intercept or slope (as determined

by nonoverlapping 90% credible intervals) for at least 10% of

the EDUs.

After identifying parameters with substantial variation, we

used forward selection to sequentially test each potential

EDU-level covariate, retaining those that differed from 0. If

multiple EDU-level covariates were selected for a varying

intercept or slope, we used backward stepwise selection to test

the effects of all covariates plus two-way interactions, sequen-

tially removing those that most overlapped 0. We then visually

inspected predicted relationships to ensure that the included

covariate effects could be interpreted clearly and were not sim-

ply the result of outliers or confounding relationships. We

tested all of the covariates in this manner until we obtained the

final habitat model where the 90% credible intervals for the

effects of all reach-level predictors and EDU-level covariates

differed from 0.

Model performance and output.—Due to computational

limitations, we could not use 30,000 posterior draws for esti-

mating Brook Trout occurrence probability at over 190,000

stream reaches. Therefore, we retrained the final selected

model using 5,000 draws from the posterior distribution to

estimate model parameters. All parameter posterior means

estimated from 5,000 draws varied by less than 1.6% from

those estimated from 30,000 draws, and parameter density

plots suggested good convergence. For all stream reaches in

the region, we then predicted occurrence probability for each

of the 5,000 posterior draws and calculated the posterior mean

and SD of the occurrence probability for each stream reach.

We mapped both of these measures throughout the region to

show the spatial distribution of Brook Trout occurrence pre-

dictions and related uncertainty. Because results were difficult

to display in vector format, we produced maps in a raster for-

mat with a spatial resolution of approximately 200 m.

We then calculated the area under the receiver operating

curve (AUC) and plotted classification accuracy across differ-

ent probability thresholds (ROCR package in R; Sing et al.

2005). The AUC is a useful and standard measure of model

performance (Hanley and McNeil 1982) but does not provide

information regarding error rates whenever one or more
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thresholds are used to determine occurrence. However, binary

classification (i.e., present or absent) of continuous probabili-

ties are often required, either explicitly or implicitly, for con-

servation and management purposes. Therefore, model

performance for a series of threshold-based classification strat-

egies was estimated based on balancing or minimizing the

rates of errors of omission or commission to categorize predic-

tions. For each of these thresholds, we calculated the classifi-

cation accuracy, sensitivity, specificity, and Cohen’s kappa

statistic (Cohen 1960; Allouche et al. 2006). Threshold 1 was

selected to ensure that Brook Trout were predicted to be pres-

ent at 90% of sites where they actually occurred (i.e., sensitiv-

ity D 0.90); this represents a low threshold that could be

employed when false negatives have large costs and when

overprediction of the occupied habitat is acceptable. We con-

sidered threshold 1 to estimate the potential distribution of

Brook Trout where habitat may be suitable. Threshold 2 was

equal to prevalence in the training data set, which produces

near-optimal classification accuracy and could be used when

false positives and false negatives have equal costs (Liu et al.

2005). We considered threshold 2 to identify suitable habitat

where Brook Trout are likely to be present. Lastly, threshold 3

was selected to ensure that Brook Trout were predicted to be

absent at 90% of sites where they were actually absent (i.e.,

specificity D 0.90). We considered threshold 3 to identify

highly suitable habitat where Brook Trout are very likely to be

present; this threshold might be used when false positives

have a high cost.

To better understand errors and visualize potential biases,

we also calculated two metrics of measurement error to deter-

mine how well the habitat model predicted occurrence at indi-

vidual stream reaches. The first metric, which we refer to as

mean deviation, was the average difference between the obser-

vation (Brook Trout not detected D 0; Brook Trout detected D
1) and the mean predicted probability of occurrence. For the

second metric, we classified occurrence using threshold 2

(probability D prevalence) for each of the 5,000 posterior

draws, and we calculated the proportion of incorrect classifica-

tions. We mapped these two error metrics throughout the

region to identify potential spatial biases in predicted

distributions.

RESULTS

There was a total of 9,159 stream reaches with fish

samples spanning the study region, but sampling and preva-

lence were uneven across the 42 EDUs (Figure 1; Table 2).

One EDU (southern Lake Erie; Figure 1) did not have any

samples and was therefore excluded from model development

and predictions. Brook Trout were present at 3,361 (45.6%) of

the 7,327 stream reaches used for model fitting and were pres-

ent at 842 (45.9%) of the remaining 1,832 samples used

for model validation. The distributions of reach-level predic-

tors were similar among the training data set, the validation

data set, and the population of stream reaches throughout

the region.

The reach level of the final model included the effects of all

four predictors plus an interaction between Max30Temp and

network agriculture (Table 3). The primary determinant of

Brook Trout occurrence was Max30Temp, which had a strong

negative effect. For example, the mean Brook Trout occur-

rence probability was always high (>0.60) when Max30Temp

was below 16�C, and the mean occurrence probability was

always low (<0.20) when Max30Temp was above 22�C. The
interaction between Max30Temp and network agriculture

revealed that the effect of Max30Temp was greater when agri-

cultural land cover was high (Figure 2). The positive effect of

network soil permeability and the negative effects of network

agriculture and local developed land cover were weaker than

that of Max30Temp but were still important for predicting

Brook Trout occurrence (Figure 3).

The EDU level of the model included substantial variation

in the intercepts and slopes (i.e., at least 10% of EDU-specific

intercepts and slopes differed from the grand mean intercept

or slope) for the effects of Max30Temp, network soil perme-

ability, and network agriculture but not for the effect of devel-

oped land cover. Intercepts were negatively correlated with

EDU mean seasonal water temperature, and the network soil

permeability slope was negatively correlated with EDU mean

soil permeability (Table 3; Figure 4). Although variation was

evident in the slopes for Max30Temp and network agriculture

(Figure 5), no EDU covariates were able to clearly explain

variation in either of these slopes. Lastly, the slope for local

developed land cover was relatively constant among EDUs

(Figure 5).

The model was able to predict Brook Trout occurrence

much better than chance for the training data set (mean

AUC D 0.79; SD D 0.01) and validation data set (mean

AUC D 0.78; SD D 0.01). The three thresholds chosen to

correspond to a 10% false-negative rate, training data preva-

lence, and a 10% false-positive rate were 0.19, 0.46, and

0.67, respectively. Classification accuracy, Cohen’s kappa,

and number of stream reaches where Brook Trout are pre-

dicted to occur are shown in Table 4 for the three thresh-

olds. As expected, overall accuracy and kappa were highest

for threshold 2 (probability � 0.46), and tradeoffs in accu-

racy, specificity, and sensitivity were evident for the lower

and higher thresholds. Mean occurrence probability was

generally higher in the northern portion of the study region

and at higher elevations (Figure 6), whereas the SD of

occurrence probability showed no clear spatial patterns

(Figure 7). Much of the region was identified as potential

habitat (probability � 0.19), but highly suitable habitat (i.e.,

probability � 0.68) had a very limited geographic extent sit-

uated primarily in the northern portion of the range (Fig-

ure 7). Maps of mean occurrence probability for a portion

of the Penns Creek watershed in central Pennsylvania, illus-

trate the detail (spatial resolution) of predictions and the
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general spatial pattern of probabilities decreasing in a down-

stream direction throughout river networks (Figure 8). We

did not observe any clear spatial biases in predictions based

on visual inspection of the maps of mean deviation (see

Figure A.1) or the proportion of incorrect classifications.

DISCUSSION
This study provides an SDM for predicting Brook Trout

occurrence based on habitat suitability throughout the entire

EBTJV region at the individual stream reach scale. Predictions

of occurrence probability and knowledge of relationships with

TABLE 2. Descriptions of ecological drainage units (EDU), including the name of each EDU, number of samples (N), prevalence of Brook Trout (prevalence),

mean water temperature (temp, �C; SD in parentheses), forest land cover (%), and mean soil permeability (mm/h; SD in parentheses). The EDU numbers are ref-

erence numbers and correspond to numbers along the x-axis in Figure 5.

EDU no. EDU name N Prevalence Temp Forest Soil

1 Alleghany Mountain tributaries 316 0.37 16.1 (1.5) 71.1 68.9 (53.3)

2 Apalachicola River–Piedmont 8 0.00 17.8 (1.5) 74.7 53.3 (17.8)

3 Cape Cod 13 0.31 16.8 (1.1) 39.2 218.4 (137.2)

4 Coosa River 38 0.00 17.3 (1.1) 88.2 50.8 (22.9)

5 Eastern Lake Erie 148 0.09 16.0 (1.5) 40.7 45.7 (50.8)

6 Eastern Chesapeake Bay 7 0.00 17.7 (1.1) 29.3 55.9 (20.3)

7 Glaciated Ohio River tributaries 103 0.02 16.5 (1.6) 49.9 50.8 (33.0)

8 Lake Champlain 230 0.41 15.1 (1.5) 66.4 81.3 (68.6)

9 Long Island 3 0.00 18.0 (1.3) 19.2 182.9 (152.4)

10 Lower Connecticut River 986 0.44 16.3 (1.4) 57.2 129.5 (81.3)

11 Lower Delaware River 399 0.34 17.1 (1.6) 41.1 61.0 (43.2)

12 Lower Hudson River 210 0.29 17.1 (1.6) 47.5 73.7 (61.0)

13 Lower Potomac River 16 0.00 18.0 (1.5) 42.4 68.6 (43.2)

14 Lower St. Croix River–downeast Maine coastal 202 0.60 14.5 (1.1) 69.0 99.1 (81.3)

15 Lower Susquehanna River 165 0.05 17.8 (1.5) 26.4 48.3 (22.9)

16 Middle Connecticut River 211 0.71 15.3 (1.4) 76.5 114.3 (66.0)

17 Middle Potomac River 34 0.00 17.7 (1.5) 32.0 58.4 (17.8)

18 Middle Susquehanna River–Juniata River 507 0.47 16.8 (1.7) 60.8 96.5 (48.3)

19 New River 112 0.10 16.1 (1.5) 73.0 83.8 (38.1)

20 Northeast Lake Ontario 42 0.43 15.5 (1.5) 48.5 101.6 (109.2)

21 Northwest Adirondacks 12 0.42 15.2 (1.4) 65.0 121.9 (109.2)

22 Penobscot–Kennebec– Androscoggin rivers 730 0.56 14.5 (1.4) 72.1 76.2 (70.0)

23 Saco–Merrimack–Charles rivers 836 0.52 15.3 (1.5) 64.1 165.1 (94.0)

24 Southern Alleghany Plateau 26 0.04 16.7 (1.5) 87.8 76.2 (40.6)

25 Southern Lake Ontario 168 0.29 16.0 (1.5) 30.5 43.2 (45.7)

26 Tennessee River–Blue Ridge 458 0.15 16.9 (1.5) 77.9 81.3 (50.8)

27 Tennessee River–Ridge and Valley 58 0.36 16.6 (1.5) 65.7 71.1 (35.6)

28 Upper Alleghany River 892 0.54 15.5 (1.6) 68.0 73.7 (45.7)

29 Upper Connecticut River 228 0.79 14.4 (1.2) 84.5 91.4 (55.9)

30 Upper Delaware River 227 0.52 15.6 (1.5) 78.1 53.3 (53.3)

31 Upper Hudson River 181 0.40 15.4 (1.4) 61.6 76.2 (71.1)

32 Upper James River 49 0.08 16.9 (1.6) 81.8 99.1 (40.6)

33 Upper Pee Dee River 38 0.13 16.4 (1.2) 70.2 55.9 (53.3)

34 Upper Potomac River–upper Shenandoah River 125 0.20 17.0 (1.7) 64.6 104.1 (45.7)

35 Upper Rappahannock River and middle James River 12 0.25 17.5 (1.5) 67.4 71.1 (27.9)

36 Upper Roanoke River 8 0.13 16.9 (1.3) 76.3 91.4 (86.4)

37 Upper Santee River 40 0.00 16.6 (1.5) 75.5 53.3 (20.3)

38 Upper Savannah River 8 0.00 17.3 (1.4) 78.7 50.8 (12.7)

39 Upper St. John River–Aroostook River 350 0.77 13.7 (1.1) 70.8 38.1 (25.4)

40 Upper Susquehanna River 421 0.52 15.8 (1.5) 59.0 48.3 (38.1)

41 West Branch Susquehanna River 542 0.79 15.6 (1.6) 77.5 91.4 (40.6)

NA Southern Lake Erie 0 NA 16.2 (1.4) 38.2 35.6 (35.6)
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habitat descriptors, in combination with estimates of uncer-

tainty, provide valuable information that can be used to help

guide ongoing transboundary management and conservation

activities. Similar SDMs that have been developed at the

stream reach scale for native and nonnative salmonids (includ-

ing Brook Trout) in the western USA have proven useful for

predicting species distributions, estimating historic habitat

losses, understanding biotic and environmental determinants

of species distributions, and identifying potential climate

change effects (Isaak et al. 2010; Wenger et al. 2011; Ruesch

et al. 2012; Al-Chokhachy et al. 2013).

The EBTJV’s assessment of Brook Trout population status

in subwatersheds was based upon empirical observations and

expert knowledge (Hudy et al. 2008) and is the only region-

wide “ground-truth” with which we can compare our model

predictions. Despite differences in spatial scale, methods, and

objectives, the mean probability summarized within the sub-

watersheds used for the EBTJV showed close relationships to

subwatershed population status. Focusing on only the subwa-

tersheds where sufficient data were available to assign popula-

tion status in the EBTJV assessment, the mean occurrence

probability was 0.22, 0.37, 0.45, and 0.57 in subwatersheds

with extirpated, greatly reduced, reduced, and intact popula-

tions, respectively. Although such comparisons are limited

due to differences in spatial scale and methodology, the posi-

tive association lends additional support to our model predic-

tions. These comparisons further demonstrate the benefit of

using SDMs in such a large region because predictions are

available for almost all stream reaches in the region, whereas

population status at the relatively coarse subwatershed scale

was unknown in much of the region due to insufficient data

(Hudy et al. 2008).

The most important determinant of Brook Trout occurrence

probability was predicted water temperature, as would be

expected based on physiology (e.g., Lee and Rinne 1980; De

Staso and Rahel 1994), field observations (Barton et al. 1985;

Picard et al. 2003), previous modeling efforts (Wehrly et al.

2007; Stranko et al. 2008; Martin and Petty 2009), and

assumptions used in prior climate change studies (Meisner

1990; Clark et al. 2001; Flebbe et al. 2006). Earlier modeling

efforts to predict Brook Trout occurrence throughout large

portions of the study region accounted for temperature effects

by including surrogate variables, such as elevation or latitude

(Meisner 1990; Flebbe et al. 2006). Predicted water tempera-

tures offered a more direct link to Brook Trout and also simpli-

fied model development because a number of potential

predictors were partially accounted for by predicted water

temperature (e.g., elevation, latitude, and watershed area). A

further benefit is that the difference between predicted and

observed water temperatures in a stream reach can be com-

pared by users to determine the reliability of Brook Trout

predictions.

We included soil permeability as a metric of soil structure,

and we found a positive association between Brook Trout and

coarse soils (i.e., higher permeability), which was expected

because fine soils can negatively affect feeding and reproduc-

tion by covering eggs or impeding groundwater exchanges

(Argent and Flebbe 1999; Sweka and Hartman 2001). Simi-

larly, negative effects of agricultural land cover and developed

land cover have been found in prior studies (e.g., Hudy et al.

TABLE 3. Reach-level predictors and ecological drainage unit (EDU)-level covariates included in the final hierarchical logistic regression model used to pre-

dict Brook Trout occurrence; estimated posterior mean, SD, and 90% credible interval (CI) are presented for each parameter.

Parameter Attribute Mean SD 90% CI

Reach level

ga0 Intercept ¡1.02 0.22 ¡1.39, ¡0.67

mb1
Max30Temp (maximum 30-d moving average temperature) ¡1.15 0.12 ¡1.33, ¡1.15

g
b2

0 Network soil permeability 0.23 0.12 0.04, 0.23

mb3 Network agriculture ¡0.59 0.15 ¡0.83, ¡0.36

mb4 Local developed land ¡0.33 0.11 ¡0.52, ¡0.15

b Max30Temp £ network agriculture ¡0.18 0.08 ¡0.32, ¡0.05

s2
a Intercept variation 1.1 0.18 0.84, 1.40

s2
b1

Max30Temp slope variation 0.43 0.08 0.31, 0.58

s2
b2 Network soil permeability slope variation 0.48 0.09 0.35, 0.64

s2
b3 Network agriculture slope variation 0.61 0.13 0.44, 0.83

s2
b4 Local developed cover slope variation 0.38 0.08 0.28, 0.51

EDU level

g1a EDU temperature ¡0.67 0.22 ¡1.04, ¡0.32

g
b2

1 EDU soil permeability ¡0.32 0.12 ¡0.53, ¡0.12
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2008; Stranko et al. 2008) and reflect the many negative in-

stream habitat alterations that can occur as a result of human

activity in the surrounding watershed (Allan 2004). For exam-

ple, Stranko et al. (2008) identified Brook Trout population

reductions and extirpations resulting from development in

Maryland (Stranko et al. 2008), and Hudy et al. (2008) identi-

fied agricultural land cover as a major determinant of Brook

Trout population status in subwatersheds. We also found that

the effect of agricultural land cover was greater in areas with

warmer water temperatures. This interaction has important

implications for climate and land use changes, indicating a

greater vulnerability of altered landscapes to increases in water

temperature, as was suggested for western U.S. landscapes

affected by wildfire (Isaak et al. 2010).

We identified substantial variation in the EDU-level aver-

age probability of occurrence (i.e., varying intercepts) and in

three varying slopes that was partially explained by EDU-level

attributes. We were not surprised to find lower intercepts for

EDUs with higher average water temperature given the strong

negative effect of water temperature at the reach level. Never-

theless, this relationship could potentially be used to set realis-

tic expectations for the proportion of habitat occupied by

Brook Trout based on average water temperature in EDUs or

other regions of interest. The negative effect of EDU mean

soil permeability on the soil permeability slope shows the
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FIGURE 2. Effects of maximum 30-d mean water temperature (Max30-

Temp) on Brook Trout occurrence probability at low (0%) and high (50%) lev-

els of agricultural land cover (black line D predicted posterior mean effect;

gray shaded area D 90% credible region).
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FIGURE 3. Brook Trout occurrence probability as a function of network soil

permeability, network agriculture, and local developed land cover (black line

D predicted posterior mean effect; gray shaded area D 90% credible region).
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importance of landscape attributes in the greater surrounding

region and demonstrates a cross-scale interaction (Soranno

et al. 2014). In this case, the positive effects of network soil

permeability were greater in EDUs with lower mean soil per-

meability. This is presumably because EDUs with higher soil

permeability have suitable soils in most catchments, such that

further increases in network soil permeability do not provide

additional benefits for Brook Trout.

The study region and the factors determining Brook Trout

population status are complex, and we recognize that our

model does not account for many landscape attributes (e.g.,
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impervious surfaces), stressors (e.g., acid mine drainage),

biotic interactions (e.g., nonnative Brown Trout), or infra-

structure (e.g., dams and culverts) that might have negative

effects. The data set did not differentiate between stocked

and wild fish, which could skew predictions in favor of

slightly warmer stream reaches in areas with greater human

presence, where Brook Trout may be stocked but where habi-

tat is unsuitable for supporting self-sustaining populations.

We also recognize that nonnative salmonids (e.g., Brown

Trout and Rainbow Trout) may have important effects (e.g.,

Wagner et al. 2013), but we did not include these effects

because we were interested in identifying suitable habitat

where Brook Trout may potentially occur irrespective of biotic

interactions. In addition, the lack of occurrence data and stock-

ing records for these salmonid species across the region makes

it difficult to conduct a regional assessment of their effects. A

separate, carefully designed analysis that is focused solely on

nonnative species would likely be necessary to accurately esti-

mate these effects. Finally, predicted water temperature and

occurrence probability are based upon an idealized stream net-

work that does not account for the effects of dams and other

water infrastructure, and this could produce overestimates in

areas where thermal and other habitat alterations have

occurred. In areas where additional factors may render habitat

suitable or unsuitable, model predictions are likely to be

underestimates or overestimates. Since we are unable to

FIGURE 6. Map of mean predicted Brook Trout occurrence probability

throughout the study region. White areas with no data did not have predic-

tions because they were not true stream reaches or because the predictor var-

iables were missing.

TABLE 4. Comparison of overall classification accuracy, sensitivity, spec-

ificity, Cohen’s kappa statistic, and the number of stream reaches in the study

region identified as occupied by Brook Trout (Noccupied) among three proba-

bility thresholds.

Threshold Accuracy Sensitivity Specificity Kappa Noccupied

0.17 0.68 0.90 0.50 0.38 129,328

0.46 0.72 0.66 0.78 0.44 61,977

0.68 0.68 0.42 0.90 0.33 25,867

FIGURE 7. Map of the SD of predicted Brook Trout occurrence probability,

showing uncertainty in predictions throughout the region. White areas with no

data did not have predictions because they were not true stream reaches or

because the predictor variables were missing.
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account for many factors that may be important locally, our

predictions are probably most suitable for addressing manage-

ment objectives across large spatial extents (i.e., regionwide

or multiple states) unless combined with local knowledge.

Model inferences and predictions could also be biased as

a result of our inability to account for imperfect detection.

In general, we do not expect these biases to be large

because detection probability for Brook Trout is generally

high (»0.90; Wagner et al. 2013). Nevertheless, a failure to

account for imperfect detection in sampling could result in

underestimation of the extent of occurrence, especially in

habitats where detection probability is lower (Royale and

Dorazio 2009). Since detection probability for Brook Trout

and other fishes can be lower in streams with greater habitat

volume or lower-density populations (Hense et al. 2010;

Wagner et al. 2013), it is possible that occurrence probabil-

ity is systematically underestimated in stream reaches that

are larger or that have densities limited by biotic interac-

tions or habitat quality.

Despite these possible limitations, our model can be used to

compare stream reaches for their potential to support self-sus-

taining Brook Trout populations throughout the species’ native

range in the eastern USA. Because higher occurrence probabil-

ities should be representative of higher habitat suitability as

long as extraneous factors are not limiting, stream reaches can

be prioritized for a given action. For example, in recent years,

several states in the EBTJV region have used targeted sam-

pling to document the presence of Brook Trout in previously

unassessed waters to gain a better understanding of Brook

Trout distribution. Predicted occurrence probabilities and pre-

diction uncertainties can be used to guide such sampling efforts

by identifying stream reaches where Brook Trout are more

likely to occur or where greater uncertainty exists. Although

model performance was reasonable, we welcome efforts to

improve the utility of the model for addressing specific objec-

tives by incorporating imperfect detection, predicting abun-

dance or density, including interannual variability through

dynamic modeling, or incorporating biotic interactions.
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APPENDIX: MEAN DEVIATION IN BROOK TROUT OCCURRENCE

FIGURE A.1 Map of the mean deviation between predicted Brook Trout occurrence probability (from 5,000 posterior draws) and observed occurrence (pres-

ence/absence). Positive values represent stream reaches where predictions were overestimates on average, and negative values represent stream reaches where

predictions were underestimates on average. [Figure available online in color.]
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