Skip to content. | Skip to navigation

Sections
Personal tools
You are here: Home

Search results

37 items matching your search terms.
Filter the results.
Item type


















New items since



Sort by relevance · date (newest first) · alphabetically
File chemical/x-pdb Quantifying the effect of semi-natural riparian cover on stream temperatures: implications for salmonid habitat management
Previous studies examining the effects of riparian cover on stream temperatures have led to highly variable findings. In an attempt to reduce these uncertainties, this study examines the relationship between stream temperature variability and local climatic conditions over discrete 300-m sections of a watercourse. Seventeen stream sections were chosen within the Slaney catchment on the basis of riparian cover and size. Continuous monitoring over a 2-year period from May 2010 found that riparian cover had a measurable cooling effect on water temperatures at small spatial scales. The magnitude of this effect was dependent on stream size and local climactic conditions.
Located in Science and Data / Brook Trout Related Publications
File Efficacy of Environmental DNA to Detect and Quantify Brook Trout Populations in Headwater Streams of the Adirondack Mountains, New York
Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.
Located in Science and Data / Brook Trout Related Publications
File Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis
Environmental DNA sampling (eDNA) has emerged as a powerful tool for detecting aquatic animals. Previous research suggests that eDNA methods are substantially more sensitive than traditional sampling. However, the factors influencing eDNA detection and the resulting sampling costs are still not well understood. Here we use multiple experiments to derive independent estimates of eDNA production rates and downstream persistence from brook trout (Salvelinus fontinalis) in streams. We use these estimates to parameterize models comparing the false negative detection rates of eDNA sampling and traditional backpack electrofishing. We find that using the protocols in this study eDNA had reasonable detection probabilities at extremely low animal densities (e.g., probability of detection 0.18 at densities of one fish per stream kilometer) and very high detection probabilities at population-level densities (e.g., probability of detection N0.99 at densities of ≥3 fish per 100 m). This is substantially more sensitive than traditional electrofishing for determining the presence of brook trout and may translate into important cost savings when animals are rare. Our findings are consistent with a growing body of literature showing that eDNA sampling is a powerful tool for the detection of aquatic species, particularly those that are rare and difficult to sample using traditional methods.
Located in Science and Data / Brook Trout Related Publications
File text/texmacs Evaluating the Barrier Assessment Technique Derived from FishXing Software and the Upstream Movement of Brook Trout through Road Culverts
Anthropogenic barriers to fish passage, such as culverts and dams, are major factors impeding the persistence and recovery of aquatic species. Considerable work has focused on mitigating these impacts; however, activities associated with measuring and restoring connectivity of aquatic ecosystems often face challenges in determining the passability of barriers by aquatic species. Hydrological modeling software that incorporates biological aspects of a focal species is often used as a relatively inexpensive method for assessing barrier passability for restoration decisions. However, the biological relevance of these approaches remains to be rigorously tested. We assessed passage rates of PIT-tagged Brook Trout Salvelinus fontinalis through four road culverts and adjacent reference sites (unaltered areas of the streams) on the island of Newfoundland to determine whether upstream passage through road culverts was more restrictive than unaltered reference areas of the stream. Next, we examined the usefulness of barrier passability predictions derived from FishXing software by comparing them with in situ movement data for this species. Brook Trout passage for three of the four reference sites had a significantly higher range of passable stream flows compared with that for culverts, indicating the presence of velocity barriers in culverts. However, FishXing predictions of suitable fish passage discharges were conservative, and tagged fish successfully navigated partial barriers that were at least 2–3 times the upper limits of stream flow predicted to allow successful passage. The results of our study show a clear need for an improved understanding of fish movement through these structures so that barrier assessment techniques can be refined. The implications of not doing so may lead to restoration actions that result in limited biological benefit.
Located in Science and Data / Brook Trout Related Publications
File application/x-troff-ms Evaluation of Catch-and-Release Regulations on Brook Trout in Pennsylvania Streams
In 2004, the Pennsylvania Fish and Boat Commission implemented catch-and-release (CR) regulations on headwater stream systems to determine if eliminating angler harvest would result in an increase in the number of adult (≥100 mm) or large (≥175 mm) Brook Trout Salvelinus fontinalis. Under the CR regulations, angling was permitted on a year-round basis, no Brook Trout could be harvested at any time, and there were no tackle restrictions. A before-after–control-impact design was used to evaluate the experimental regulations. Brook Trout populations were monitored in 16 treatment (CR regulations) and 7 control streams (statewide regulations) using backpack electrofishing gear periodically for up to 15 years (from 1990 to 2003 or 2004) before the implementation of the CR regulations and over a 7–8-year period (from 2004 or 2005 to 2011) after implementation. We used Poisson mixed models to evaluate whether electrofishing catch per effort (CPE; catch/100 m2) of adult (≥100 mm) or large (≥175 mm) Brook Trout increased in treatment streams as a result of implementing CR regulations. Brook Trout CPE varied among sites and among years, and there was no significant effect (increase or decrease) of CR regulations on the CPE of adult or large Brook Trout. Results of our evaluation suggest that CR regulations were not effective at improving the CPE of adult or large Brook Trout in Pennsylvania streams. Low angler use, high voluntary catch and release, and slow growth rates in infertile headwater streams are likely the primary reasons for the lack of response.
Located in Science and Data / Brook Trout Related Publications
File text/texmacs Movement Patterns of Brook Trout in a Restored Coastal Stream System in Southern Massachusetts
Populations of anadromous brook trout can be found from northern Canada into New England. It is believed that the extent of anadromy exhibited by coastal brook trout populations decreases with latitude, but the ecology and movements of the more southern populations are less studied. A 33-month acoustic telemetry study of anadromous brook trout (Salvelinus fontinalis) was conducted in a restored coastal stream and adjacent marine system in southeastern Massachusetts. Movement and migration patterns of 54 brook trout were investigated for individual differences and common features. Individuals exhibited a range of movement patterns. Some were more resident and only moved short distances, while others moved great distances covering the entire stretch of the stream (7.25 km) and moving into the marine environment. General Additive Mixed Models revealed that date was the major influence on brook trout movement between habitats and predicted peaks in movement in the spring and fall. Downstream movement peaked in the spring and in the fall, suggesting post-spawning feeding migration. Fish transitioned between habitats more often at new and full moons and when stream temperature was between 8 and 12 °C. Upstream transitions peaked as temperatures declined in winter 2011. Fifty percent of tagged brook trout were detected in the estuary during the study, suggesting that it is an important habitat for the population. In summer 2012, 14 tagged brook trout (20% of active tags) resided near one receiver at the head of the tide, which contained a thermal refugium in the form of a cold-water spring seep. Of the 84 tagged brook trout, 9.5% moved to the marine environment. Warm temperatures in saline Buttermilk Bay in the summer and cold temperatures in winter probably discourage some individuals from entering the marine environment. Compared to more northern coastal populations of brook trout, the Red Brook population appears to be less anadromous.
Located in Science and Data / Brook Trout Related Publications
File Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection
Predictions of the projected changes in species distribution models and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) that is known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern U.S. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as 0.2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.
Located in Science and Data / Brook Trout Related Publications
File text/texmacs A Function-Based Framework for Stream Assessment & Restoration Projects
Stream restoration efforts have increased significantly in the US over the past few decades and are now recognized as a billion-dollar industry. These restoration efforts stem from centuries of abuse as humans continue to alter the riverine landscape for a variety of purposes, including farming, logging, mining and development on the floodplain, and the subsequent need for channelization and flood control. These activities have significantly diminished the natural functions of our stream corridors. Today stream corridor restoration efforts seek to improve or restore these lost functions. A variety of federal, state and local programs, along with efforts from non-profit organizations, provide funding for these programs. The goals are varied and range from simple streambank stabilization projects to watershed scale restoration. For these projects to be successful it is important to know why the project is being completed and what techniques are best suited to restore the lost functions. Knowing why a project is needed requires some form of functional assessment followed by clear project goals. To successfully restore stream functions, it is necessary to understand how these different functions work together and which restoration techniques influence a given function. It is also imperative to understand that stream functions are interrelated and build on each other in a specific order, a functional hierarchy. If this hierarchy is understood, it is easier to establish project goals. And with clearer goals, it is easier to evaluate project success.
Located in Science and Data / Brook Trout Related Publications / Stream Assessment and Monitoring
File Sampling strategies for estimating brook trout effective population size
The influence of sampling strategy on estimates of effective population size (Ne) from single-sample genetic methods has not been rigorously examined, though these methods are increasingly used. For headwater salmonids, spatially close kin association among age-0 individuals suggests that sampling strategy (number of individuals and location from which they are collected) will influence estimates of Ne through family representation effects. We collected age-0 brook trout by completely sampling three headwater habitat patches, and used microsatellite data and empirically parameterized simulations to test the effects of different combinations of sample size (S = 25, 50, 75, 100, 150, or 200) and number of equally-spaced sample starting locations (SL = 1, 2, 3, 4, or random) on estimates of mean family size and effective number of breeders (Nb). Both S and SL had a strong influence on estimates of mean family size and ^ Nb; however the strength of the effects varied among habitat patches that varied in family spatial distributions. The sampling strategy that resulted in an optimal balance between precise estimates of Nb and sampling effort regardless of family structure occurred with S = 75 and SL = 3. This strategy limited bias by ensuring samples contained individuals from a high proportion of available families while providing a large enough sample size for precise estimates. Because this sampling effort performed well for populations that vary in family structure, it should provide a generally applicable approach for genetic monitoring of iteroparous headwater stream fishes that have overlapping generations.
Located in Science and Data / Brook Trout Related Publications / Stream Assessment and Monitoring
File Distribution and Status of Brook Trout in eastern U.S. - Hudy et al. 2008
This publication describes the distribution and status of Brook Trout across its historic eastern U. S. range.
Located in Science and Data / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References