Skip to content. | Skip to navigation

Sections
Personal tools
You are here: Home

Search results

30 items matching your search terms.
Filter the results.
Item type



















New items since



Sort by relevance · date (newest first) · alphabetically
File Linking movement and reproductive history of brook trout to assess habitat connectivity in a heterogeneous stream network
1. Defining functional connectivity between habitats in spatially heterogeneous landscapes is a particular challenge for small-bodied aquatic species. Traditional approaches (e.g. mark–recapture studies) preclude an assessment of animal movement over the life cycle (birth to reproduction), and movement of individuals may not represent the degree of gene movement for fecund species. 2. We investigated the degree of habitat connectivity (defined as the exchange of individuals and genes between mainstem and tributary habitats) in a stream brook trout (Salvelinus fontinalis) population using mark–recapture [passive integrated transponder (PIT) tags], stationary PIT-tag antennae and genetic pedigree data collected over 4 years (3425 marked individuals). We hypothesised that: (i) a combination of these data would reveal higher estimates of animal movement over the life cycle (within a generation), relative to more temporally confined approaches, and (ii) movement estimates of individuals within a generation would differ from between-generation movement of genes because of spatial variation in reproductive success associated with high fecundity of this species. 3. Over half of PIT-tagged fish (juveniles and adults) were recaptured within 20 m during periodic sampling, indicating restricted movement. However, continuous monitoring with stationary PIT-tag antennae revealed distinct peaks in trout movements in June and October–November, and sibship data inferred post-emergence movements of young-of-year trout that were too small to be tagged physically. A combination of these methods showed that a moderate portion of individuals (28–33%) moved between mainstem and tributary habitats over their life cycle. 4. Patterns of reproductive success varied spatially and temporally. The importance of tributaries as spawning habitat was discovered by accounting for reproductive history. When individuals born in the mainstem reproduced successfully, over 50% of their surviving offspring were inferred to have been born in tributaries. This high rate of gene movement to tributaries was cryptic, and it would have been missed by estimates based only on movement of individuals. 5. This study highlighted the importance of characterising animal movement over the life cycle for inferring habitat connectivity accurately. Such movements of individuals can contribute to substantial gene movements in a fecund species characterised by high variation in reproductive success.
Located in Resources / Brook Trout Related Publications
File Brook Trout Movement in Response to Temperature, Flow, and Thermal Refugia within a Complex Appalachian Riverscape
We quantified movements of brook trout Salvelinus fontinalis and brown trout Salmo trutta in a complex riverscape characterized by a large, open-canopy main stem and a small, closed-canopy tributary in easternWest Virginia, USA. Our objectives were to quantify the overall rate of trout movement and relate movement behaviors to variation in streamflow, water temperature, and access to coldwater refugia. The study area experienced extremely high seasonal, yearly, and among-stream variability in water temperature and flow. The relative mobility of brook trout within the upper Shavers Fork watershed varied significantly depending on whether individuals resided within the larger main stem or the smaller tributary. The movement rate of trout inhabiting the main stem during summer months (50 m/d) was an order of magnitude higher than that of tributary fish (2 m/d). Movement rates of main-stem-resident brook trout during summer were correlated with the maximum water temperature experienced by the fish and with the fish’s initial distance from a known coldwater source. For main-stem trout, use of microhabitats closer to cover was higher during extremely warm periods than during cooler periods; use of microhabitats closer to cover during warm periods was also greater for main-stem trout than for tributary inhabitants. Main-stem-resident trout were never observed in water exceeding 19.5◦C. Our study provides some of the first data on brook trout movements in a large Appalachian river system and underscores the importance of managing trout fisheries in a riverscape context. Brook trout conservation in this region will depend on restoration and protection of coldwater refugia in larger river main stems as well as removal of barriers to trout movement near tributary and main-stem confluences.
Located in Resources / Brook Trout Related Publications
File The temperature–productivity squeeze: constraints on brook trout growth along an Appalachian river continuum
We tested the hypothesis that brook trout growth rates are controlled by a complex interaction of food availability, water temperature, and competitor density. We quantified trout diet, growth, and consumption in small headwater tributaries characterized as cold with low food and high trout density, larger tributaries characterized as cold with moderate food and moderate trout density, and large main stems characterized as warm with high food and low trout density. Brook trout consumption was highest in the main stem where diets shifted from insects in headwaters to fishes and crayfish in larger streams. Despite highwater temperatures, trout growth rates also were consistently highest in the main stem, likely due to competitively dominant trout monopolizing thermal refugia. Temporal changes in trout density had a direct negative effect on brook trout growth rates. Our results suggest that competition for food constrains brook trout growth in small streams, but access to thermal refugia in productive main stem habitats enables dominant trout to supplement growth at a watershed scale. Brook trout conservation in this region should seek to relieve the ‘‘temperature–productivity squeeze,’’ whereby brook trout productivity is constrained by access to habitats that provide both suitable water temperature and sufficient prey.
Located in Resources / Brook Trout Related Publications
File ECMAScript program Predicting Brook Trout Occurrence in Stream Reaches throughout their Native Range in the Eastern United States
The Brook Trout Salvelinus fontinalis is an important species of conservation concern in the eastern USA. We developed a model to predict Brook Trout population status within individual stream reaches throughout the species’ native range in the eastern USA. We utilized hierarchical logistic regression with Bayesian estimation to predict Brook Trout occurrence probability, and we allowed slopes and intercepts to vary among ecological drainage units (EDUs). Model performance was similar for 7,327 training samples and 1,832 validation samples based on the area under the receiver operating curve (»0.78) and Cohen’s kappa statistic (0.44). Predicted water temperature had a strong negative effect on Brook Trout occurrence probability at the stream reach scale and was also negatively associated with the EDU average probability of Brook Trout occurrence (i.e., EDU-specific intercepts). The effect of soil permeability was positive but decreased as EDU mean soil permeability increased. Brook Trout were less likely to occur in stream reaches surrounded by agricultural or developed land cover, and an interaction suggested that agricultural land cover also resulted in an increased sensitivity to water temperature. Our model provides a further understanding of how Brook Trout are shaped by habitat characteristics in the region and yields maps of stream-reach-scale predictions, which together can be used to support ongoing conservation and management efforts. These decision support tools can be used to identify the extent of potentially suitable habitat, estimate historic habitat losses, and prioritize conservation efforts by selecting suitable stream reaches for a given action. Future work could extend the model to account for additional landscape or habitat characteristics, include biotic interactions, or estimate potential Brook Trout responses to climate and land use changes.
Located in Resources / Brook Trout Related Publications
File A regional neural network ensemble for predicting mean daily river water temperature
Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate and land use changes, thereby providing information that is valuable to management of river ecosystems and biota such as brook trout.
Located in Resources / Brook Trout Related Publications
File Distribution and Status of Brook Trout in eastern U.S. - Hudy et al. 2008
This publication describes the distribution and status of Brook Trout across its historic eastern U. S. range.
Located in Resources / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References
File Predicting Brook Trout Occurrence in Stream Reaches throughout their Native Range in the Eastern United States - DeWeber and Wagner 2015
This publication describes a model that was developed to predict Brook Trout population status within individual stream reaches throughout the species' native range in the eastern USA.
Located in Resources / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References
File Dynamically Downscaled Climate Simulations over North America - Hostetler et al. 2011
This publication describes an array of high resolution simulations of present and future climate over North America.
Located in Resources / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References
File C++ source code Climate Change 2007 Synthesis Report - IPCC
This report summarizes the findings of three Working Group reports and provides a synthesis that specifically addresses the issues of concern to policy makers in the domain of climate change.
Located in Resources / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References
File Sampling strategies for estimating brook trout effective population size - Whitely et al. 2012
This research examined the influence of sampling strategy on estimates of effective population size.
Located in Resources / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References