Skip to content. | Skip to navigation

Sections
Personal tools
You are here: Home

Search results

44 items matching your search terms.
Filter the results.
Item type
















New items since



Sort by relevance · date (newest first) · alphabetically
File application/x-maker October 2012 NFH Board Meeting Book
This document contains materials associated with the National Fish Habitat Board's October 16 - 17, 2012 in-person meeting.
Located in Resources / National Fish Habitat Board Meetings / 2012 NFH Board Meetings
File application/x-maker July 2012 NFH Board Meeting Book
This document contains materials associated with the National Fish Habitat Board's July 10 - 11, 2012 in-person meeting.
Located in Resources / National Fish Habitat Board Meetings / 2012 NFH Board Meetings
File application/x-maker April 2012 NFH Board Meeting Book
This document contains materials associated with the National Fish Habitat Board's April 17 - 18, 2012 in-person meeting.
Located in Resources / National Fish Habitat Board Meetings / 2012 NFH Board Meetings
File application/x-maker January 2012 NFH Board Meeting Book
This document contains materials associated with the National Fish Habitat Board's January 12, 2012 meeting that was conducted by teleconference.
Located in Resources / National Fish Habitat Board Meetings / 2012 NFH Board Meetings
File National Fish Habitat Action Plan 2nd Edition_2012
This 2nd Edition of the National Fish Habitat Action Plan (2012) contains new objectives to further direct the National Fish Habitat Partnership's work of protecting, restoring, and enhancing fish habitats nationwide.
Located in Groups / Steering Committee / National Fish Habitat Partnership
File chemical/x-pdb Jam Black Brook Culvert Replacement, ME_FY12 Project
The goals of the project were: (1) To remove an obstruction to upstream fish passage for brook trout, Atlantic salmon and other resident and migratory fish. (2) To restore access to 9.8 miles of stream habitat upstream of the obstruction. (3) To restore natural sediment and woody debris transport through the crossing site. (4) To improve flood capacity at the Magog Road crossing, reducing the risk of debris jams or overtopping the road. (5) To provide a demonstration site in mid‐coast Maine for an appropriate stream crossing developed in cooperation with the municipality.
Located in Projects / Project Completion Reports
File chemical/x-pdb Tipton Creek Culvert Replacement, NC_FY10 Project
In the summer of 2011 the culvert at the Davis Creek Road (FSR 420) crossing of Tipton Creek was removed and replaced with a concrete arch, stream simulation crossing for the purpose of passing aquatic organisms, where the existing culvert was known to be a barrier to aquatic passage due to velocity and outlet drop. The crossing was sized using the 100-year flow calculation derived from the USGS Regression Equation for the mountains of North Carolina. Additionally, the width of the crossing was designed to accommodate a bankfull flow channel dimension plus a small area of floodplain. The channel was reconstructed through the crossing using the dimension, pattern, and profile of the reference reach upstream. The new channel was constructed using imported boulders and onsite alluvial materials. Grass seed was sown, and trees and shrubs were planted, both potted and live-stakes. Over the last year since construction, the site has experienced several small flood events. The site remains stable, passable to all aquatic species, and looks more and more natural every year as planted and natural vegetation establishes.
Located in Projects / Project Completion Reports
File Modified Culvert Inventory and Assessment Protocol
This culvert inventory and assessment method is a modified version of the National Inventory and Assessment Procedure (NIAP; Clarkin et al 2003) developed to collect data needed to run coarse filter evaluations of fish passage (Coffman 2005).
Located in Resources / Brook Trout Related Publications
File Sampling strategies for estimating brook trout effective population size
The influence of sampling strategy on estimates of effective population size (Ne) from single-sample genetic methods has not been rigorously examined, though these methods are increasingly used. For headwater salmonids, spatially close kin association among age-0 individuals suggests that sampling strategy (number of individuals and location from which they are collected) will influence estimates of Ne through family representation effects. We collected age-0 brook trout by completely sampling three headwater habitat patches, and used microsatellite data and empirically parameterized simulations to test the effects of different combinations of sample size (S = 25, 50, 75, 100, 150, or 200) and number of equally-spaced sample starting locations (SL = 1, 2, 3, 4, or random) on estimates of mean family size and effective number of breeders (Nb). Both S and SL had a strong influence on estimates of mean family size and ^ Nb; however the strength of the effects varied among habitat patches that varied in family spatial distributions. The sampling strategy that resulted in an optimal balance between precise estimates of Nb and sampling effort regardless of family structure occurred with S = 75 and SL = 3. This strategy limited bias by ensuring samples contained individuals from a high proportion of available families while providing a large enough sample size for precise estimates. Because this sampling effort performed well for populations that vary in family structure, it should provide a generally applicable approach for genetic monitoring of iteroparous headwater stream fishes that have overlapping generations.
Located in Resources / Brook Trout Related Publications / Stream Assessment and Monitoring
File Brook Trout Movement in Response to Temperature, Flow, and Thermal Refugia within a Complex Appalachian Riverscape
We quantified movements of brook trout Salvelinus fontinalis and brown trout Salmo trutta in a complex riverscape characterized by a large, open-canopy main stem and a small, closed-canopy tributary in easternWest Virginia, USA. Our objectives were to quantify the overall rate of trout movement and relate movement behaviors to variation in streamflow, water temperature, and access to coldwater refugia. The study area experienced extremely high seasonal, yearly, and among-stream variability in water temperature and flow. The relative mobility of brook trout within the upper Shavers Fork watershed varied significantly depending on whether individuals resided within the larger main stem or the smaller tributary. The movement rate of trout inhabiting the main stem during summer months (50 m/d) was an order of magnitude higher than that of tributary fish (2 m/d). Movement rates of main-stem-resident brook trout during summer were correlated with the maximum water temperature experienced by the fish and with the fish’s initial distance from a known coldwater source. For main-stem trout, use of microhabitats closer to cover was higher during extremely warm periods than during cooler periods; use of microhabitats closer to cover during warm periods was also greater for main-stem trout than for tributary inhabitants. Main-stem-resident trout were never observed in water exceeding 19.5◦C. Our study provides some of the first data on brook trout movements in a large Appalachian river system and underscores the importance of managing trout fisheries in a riverscape context. Brook trout conservation in this region will depend on restoration and protection of coldwater refugia in larger river main stems as well as removal of barriers to trout movement near tributary and main-stem confluences.
Located in Resources / Brook Trout Related Publications