Skip to content. | Skip to navigation

Sections
Personal tools
You are here: Home / Practitioners (individuals) / Perry, Stephen

Search results

367 items matching your search terms.
Filter the results.
Item type


















New items since



Sort by relevance · date (newest first) · alphabetically
File Dynamically Downscaled Climate Simulations over North America - Hostetler et al. 2011
This publication describes an array of high resolution simulations of present and future climate over North America.
Located in Science and Data / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References
File C++ source code Climate Change 2007 Synthesis Report - IPCC
This report summarizes the findings of three Working Group reports and provides a synthesis that specifically addresses the issues of concern to policy makers in the domain of climate change.
Located in Science and Data / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References
File Draft Chesapeake Bay Brook Trout Management Strategy_2-26-15
This document is a working draft of the Brook Trout management strategy being developed for the Chesapeake Bay watershed.
Located in Science and Data / Brook Trout Related Publications / Chesapeake Bay Brook Trout Management Strategy-References
File Octet Stream A new species of Myxobolus (Myxozoa: Bivalvulida) infecting the medulla oblongata and nerve cord of brook trout Salvelinus fontinalis in southern Appalachia (New River, NC, USA)
Myxobolus neurofontinalis n. sp. infects the brain and medulla oblongata of brook trout (Salvelinus fontinalis [Mitchill, 1814]) in the New River, western NC. It is the first species of Myxobolus described from the brook trout and resembles another congener (Myxobolus arcticus Pugachev and Khokhlov, 1979) that infects nerve tissue of chars (Salvelinus spp.). The new species differs from M. arcticus and all congeners bymyxospore dimensions and by having a mucous envelope and distinctive suturalmarkings. A phylogenetic analysis of the small subunit rDNA (18S) suggests that the new species shares a recent common ancestor with some isolates identified as M. arcticus and that the new species and its close relatives (except Myxobolus insidiosus Wyatt and Pratt, 1973) comprise a clade of salmonid nerve-infecting myxobolids. The phylogenetic analysis indicates that several isolates of “M. arcticus” (sensu lato) in GenBank are misidentified and distantly related to other isolates taken from the type host (Oncorhynchus nerka [Walbaum, 1792]) and from nearby the type locality (Kamchatka Peninsula, Russia). Serial histological sections of infected brook trout confirmed that myxospores of the new species are intercellular and infect nerve cord and medulla oblongata only. A single infected brook trout showed an inflammatory response characterized by focal lymphocytic infiltrates and eosinophilic granulocytes; however, the remaining 4 brook trout lacked evidence of a histopathological change or demonstrable host response. These results do not support the notion that this infection is pathogenic among brook trout.
Located in Science and Data / Brook Trout Related Publications
File ECMAScript program An updated geographic distribution of Myxobolus cerebralis (Hofer, 1903) (Bivalvulida: Myxobolidae) and the first diagnosed case of whirling disease in wild-caught trout in the south-eastern United States
Myxobolus cerebralis (Bivalvulida: Myxobolidae), the aetiological agent of salmonid whirling disease, was detected in 2 river basins of North Carolina during 2015, which initiated the largest spatial–temporal monitoring project for the disease ever conducted within the south-eastern United States (focused mainly in eastern Tennessee and western North Carolina). A total of 2072 rainbow trout Oncorhynchus mykiss, 1,004 brown trout Salmo trutta and 468 brook trout Salvelinus fontinalis were screened from 113 localities within 7 river basins during June 2017 through October 2019. Infections were detected by pepsin–trypsin digest, microscopy and the species-specific nested polymerase chain reaction (PCR) in 19 localities across 6 river basins. Myxospore morphology was indistinguishable from the published literature. In 2019, five rainbow trout that symptomatic for whirling disease (sloping neurocranium and lordosis) were captured and processed for histopathology. Myxospores were detected in the calvarial cartilage of two deformed trout with associated erosion of the cartilage consistent with reported whirling disease lesions. This is the first report of M. cerebralis in Tennessee and the first histologically confirmed cases of whirling disease in southern Appalachian (south-eastern United States) rivers and streams and expands the distribution of M. cerebralis throughout western North Carolina and eastern Tennessee.
Located in Science and Data / Brook Trout Related Publications
File C header Ranking Site Vulnerability to Increasing Temperatures in Southern Appalachian Brook Trout Streams in Virginia: An Exposure - Sensitivity Approach
Climate change vulnerability classification model for brook trout populations; brook trout populations are classified into one of four quadrants based on direct measurements or model predictions of sensitivity and exposure. Low exposure, low sensitivity populations are most likely to persist under various climate change scenarios.
Located in Science and Data / Brook Trout Related Publications
File Sensitivity and Vulnerability of Brook Trout Populations to Climate Change
Predicting future brook trout Salvelinus fontinalis distributions at the population scale under various climate scenarios is of interest to the Eastern Brook Trout Joint Venture. Previous larger scale models have been useful in highlighting the potential threat; however, the predicted air and water temperature errors associated with these models makes predictions of the persistence of individual brook trout populations problematic. We directly measured paired air and water temperatures in watersheds (N = 77) containing reproducing populations of brook trout in Virginia. We found that paired air and water temperature relationships are highly variable among patches but are a useful dataset to classify sensitivity and vulnerability of existing brook trout patches. We developed a classification system using sensitivity and vulnerability metrics that classified sampled brook trout habitats into four categories (High Sensitivity- High Vulnerability (51.9% ); High Sensitivity-Low Vulnerability (10.4 % ); Low Sensitivity-High Vulnerability (7.8 % ); Low Sensitivity-Low Vulnerability (29.9 % ). Our direct measurement approach identified potential refugia for brook trout at lower elevations and with higher air temperatures than previous larger scale modeling efforts. Our sensitivity and vulnerability groupings should be useful for managers making investment decisions in protecting and restoring brook trout.
Located in Science and Data / Brook Trout Related Publications
File Fragmentation and Patch Size Shape Genetic Structure of Brook Trout Populations
We tested the relative influence of habitat patch size and connectivity on genetic structure and effective population size in eight brook trout (Salvelinus fontinalis) habitat patches in a watershed in Virginia, USA. Variation at eight microsatellite loci in 2229 young-of-the-year brook trout for two successive cohorts (2010 and 2011) was examined. Genetic differentiation across all populations was pronounced. Overall F'ST was 0.397 (95% CI: 0.322–0.525) and overall FST was 0.124 (95% CI: 0.096–0.159). Above-barrier patch size had a strong positive relationship with genetic diversity, Nˆ b, and genetic differentiation. Our analysis is consistent with greater extinction risk in smaller above-barrier patches. Larger above-barrier patches contained greater genetic diversity but reduced Nˆ b relative to adjacent below-barrier patches. The primary effect of barriers may be to reduce available above-barrier spawning habitat, even for larger above-barrier patches. Below-barrier patches also showed evidence of reduced genetic diversity and lack of connectivity. Genetic monitoring focused at gaining a broader understanding of the relationships here will be necessary to fully evaluate local extinction risks.
Located in Science and Data / Brook Trout Related Publications
Symposium Proceedings
Located in Science and Data / Symposium Proceedings
File Brook Trout: The Scourge and the Saint. Applying Lessons Learned from Both Eradication and Reintroduction Efforts across the West and East to Better Manage this Char
Symposium Proceedings - 2019 American Fisheries Society/The Wildlife Society Joint Annual Meeting held in Reno, Nevada.
Located in Science and Data / Symposium Proceedings / Symposium Proceedings