Skip to content. | Skip to navigation

Sections
Personal tools
You are here: Home / Practitioners (individuals) / Perry, Stephen

Search results

362 items matching your search terms.
Filter the results.
Item type


















New items since



Sort by relevance · date (newest first) · alphabetically
File Modified Culvert Inventory and Assessment Protocol
This culvert inventory and assessment method is a modified version of the National Inventory and Assessment Procedure developed to collect data needed to run coarse filter evaluations of fish passage.
Located in Science and Data / Aquatic Organism Passage I&A and state design guidelines
Aquatic Organism Passage I&A and state design guidelines
This folder contains documents related to aquatic organism passage inventory and assessment protocols and design guidance from state partners.
Located in Science and Data
10th International Charr Symposium in Japan: First Announcement
The International Symposium on Charr (genus Salvelinus) attracts a diverse community that uses charr in research, recreation, and as a food resource.
Located in News & Events / News Inbox
File Octet Stream Individual behaviour and resource use of thermally stressed brook trout Salvelinus fontinalis portend the conservation potential of thermal refugia
Individual aggression and thermal refuge use were monitored in brook trout Salvelinus fontinalis in a controlled laboratory to determine how fish size and personality influence time spent in forage and thermal habitat patches during periods of thermal stress. On average, larger and more exploratory fish initiated more aggressive interactions and across all fish there was decreased aggression at warmer temperatures. Individual personality did not explain changes in aggression or habitat use with increased temperature; however, larger individuals initiated comparatively fewer aggressive interactions at warmer temperatures. Occupancy of forage patches generally declined as ambient stream temperatures approached critical maximum and fish increased thermal refuge use, with a steeper decline in forage patch occupancy observed in larger fish. These findings suggest that larger individuals may be more vulnerable to stream temperature rise. Importantly, even at thermally stressful temperatures, all fish periodically left the thermal refuge to forage. This indicates that the success of refugia at increasing population survival during periods of stream temperature rise may depend on the location of thermal refugia relative to forage locations within the larger habitat mosaic. These results provide insights into the potential for thermal refugia to improve population survival and can be used to inform predictions of population vulnerability to climate change.
Located in Science and Data / Brook Trout Related Publications
File application/x-troff-ms Evaluating the Trade-Offs between Invasion and Isolation for Native Brook Trout and Nonnative Brown Trout in Pennsylvania Streams
A popular conservation strategy for native trout species in western North America is to prevent invasions by nonnative trout by installing barriers that isolate native trout populations into headwater streams. In eastern North America, native Brook Trout Salvelinus fontinalis are frequently replaced in coolwater habitats by nonnative Brown Trout Salmo trutta and relegated to small headwater streams. In this study, we compared the effects of isolation and invasion by nonnative Brown Trout on the distribution and demographic structure of Brook Trout populations from 78 trout streams in northwestern Pennsylvania. The Brook Trout and Brown Trout distributions varied in predictable ways along the stream size gradient, with Brown Trout becoming dominant in larger streams. However, there was a prominent barrier effect, with streams 12 times more likely to have Brook Trout than Brown Trout when a downstream barrier was present between the sample site and the nearest Brown Trout stocking location. In comparison, 91% of the streams with Brown Trout had no downstream barrier, suggesting that barriers are important in creating refugia for Brook Trout. Brown Trout also appeared to have a negative impact on Brook Trout population demographics, as Brook Trout populations in sympatry with Brown Trout had fewer age-classes and lower population densities than allopatric Brook Trout populations. Isolating Brook Trout to small headwater streams with downstream barriers that prevent Brown Trout invasion could be a viable conservation strategy in regions where barriers would serve to reduce the negative impacts from Brown Trout. Since barriers could further fragment local Brook Trout populations, however, they would need to be strategically placed to allow for seasonal movements to maintain metapopulation structure and ensure population persistence.
Located in Science and Data / Brook Trout Related Publications
Users can zoom-in to an area of interest and then compare current conditions against various future scenarios (3 levels of air temperature change x 3 levels of GW sensitivity to air temperature change). The interpretation is simple: red sites are too warm (MWAT > 23 C) and blue sites have suitable temperatures.
Located in Science and Data / Data and Brook Trout Decision Support Tools
File Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection
Predictions of the projected changes in species distribution models and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) that is known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern U.S. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as 0.2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our study demonstrates that even relatively small differences in the definitions of climate metrics can result in very different projections and reveal high uncertainty in predicted climate change effects.
Located in Science and Data / Brook Trout Related Publications
File Metabolic rates of embryos and alevin from a cold-adapted salmonid differ with temperature, population and family of origin: implications for coping with climate change
Early developmental stages of cold-adapted ectotherms such as brook trout (Salvelinus fontinalis) are at higher risk of mortality with increasing water temperatures. To determine the amount of variation present in early life, which may allow for potential adaptation to increasing temperature, we examined the routine metabolic rates (RMR) of wild-origin brook trout embryos and alevins reared at normal (5°C) and elevated (9°C) temperatures. The experiment was structured to examine variation in RMR within and among several levels of biological organization (family, population and ancestral type (native vs. mixed ancestry)). As expected, family and temperature variables were most important for predicting RMR and body mass, although population-level differences also existed when family was excluded for more detailed analysis. Additionally, body mass strongly influenced RMR at all life stages except for eyed embryos. When family identity was removed from the analysis, population became the most significant variable. Variation in RMR and mass within and among populations may indicate existing adaptive potential within and among brook trout populations to respond to predicted warming under climate change scenarios.
Located in Science and Data / Brook Trout Related Publications
File text/texmacs Movement Patterns of Brook Trout in a Restored Coastal Stream System in Southern Massachusetts
Populations of anadromous brook trout can be found from northern Canada into New England. It is believed that the extent of anadromy exhibited by coastal brook trout populations decreases with latitude, but the ecology and movements of the more southern populations are less studied. A 33-month acoustic telemetry study of anadromous brook trout (Salvelinus fontinalis) was conducted in a restored coastal stream and adjacent marine system in southeastern Massachusetts. Movement and migration patterns of 54 brook trout were investigated for individual differences and common features. Individuals exhibited a range of movement patterns. Some were more resident and only moved short distances, while others moved great distances covering the entire stretch of the stream (7.25 km) and moving into the marine environment. General Additive Mixed Models revealed that date was the major influence on brook trout movement between habitats and predicted peaks in movement in the spring and fall. Downstream movement peaked in the spring and in the fall, suggesting post-spawning feeding migration. Fish transitioned between habitats more often at new and full moons and when stream temperature was between 8 and 12 °C. Upstream transitions peaked as temperatures declined in winter 2011. Fifty percent of tagged brook trout were detected in the estuary during the study, suggesting that it is an important habitat for the population. In summer 2012, 14 tagged brook trout (20% of active tags) resided near one receiver at the head of the tide, which contained a thermal refugium in the form of a cold-water spring seep. Of the 84 tagged brook trout, 9.5% moved to the marine environment. Warm temperatures in saline Buttermilk Bay in the summer and cold temperatures in winter probably discourage some individuals from entering the marine environment. Compared to more northern coastal populations of brook trout, the Red Brook population appears to be less anadromous.
Located in Science and Data / Brook Trout Related Publications
File Conservation Genetics of Remnant Coastal Brook Trout Populations at the Southern Limit of Their Distribution: Population Structure and Effects of Stocking
We examined genetic variation within and among a group of remnant coastal brook trout Salvelinus fontinalis populations along the coast of the northeastern United States. These populations occur at the southern limits of anadromy for this species and could form the foundation of a restored anadromous metapopulation. We also tested for genetic introgression between these populations and the hatchery source that has been used to stock these sites. The overall FST for the natural populations at 12 microsatellite loci was 0.145 (95% confidence interval, 0.108–0.183), and D was 0.225 (0.208–0.243). On average, 94.6% of individuals were correctly assigned to the population where they were collected. Our results suggest that there is little gene flow even between geographically proximate populations. We found little evidence that repeated historic stocking from a known hatchery source has led to genetic introgression into these wild coastal brook trout populations. One hybrid individual appeared to be a backcross between an F1 and a hatchery individual. Another hybrid individual could not be classified. Our results suggest that nonintrogressed and potentially locally adapted populations of brook trout persist in several small coastal New England streams. These populations should be the focus of future efforts to restore anadromous brook trout in this region.
Located in Science and Data / Brook Trout Related Publications